Loss of control over harmful drug seeking is one of the most intractable aspects of addiction, as human substance abusers continue to pursue drugs despite incurring significant negative consequences. Human studies have suggested that deficits in prefrontal cortical function and consequential loss of inhibitory control could be crucial in promoting compulsive drug use. However, it remains unknown whether chronic drug use compromises cortical activity and, equally important, whether this deficit promotes compulsive cocaine seeking. Here we use a rat model of compulsive drug seeking in which cocaine seeking persists in a subgroup of rats despite delivery of noxious foot shocks. We show that prolonged cocaine self-administration decreases ex vivo intrinsic excitability of deep-layer pyramidal neurons in the prelimbic cortex, which was significantly more pronounced in compulsive drug-seeking animals. Furthermore, compensating for hypoactive prelimbic cortex neurons with in vivo optogenetic prelimbic cortex stimulation significantly prevented compulsive cocaine seeking, whereas optogenetic prelimbic cortex inhibition significantly increased compulsive cocaine seeking. Our results show a marked reduction in prelimbic cortex excitability in compulsive cocaine-seeking rats, and that in vivo optogenetic prelimbic cortex stimulation decreased compulsive drug-seeking behaviours. Thus, targeted stimulation of the prefrontal cortex could serve as a promising therapy for treating compulsive drug use.
Compulsive drinking despite serious adverse medical, social and economic consequences is a characteristic of alcohol use disorders in humans. Although frontal cortical areas have been implicated in alcohol use disorders, little is known about the molecular mechanisms and pathways that sustain aversion-resistant intake. Here, we show that nucleus accumbens core (NAcore) NMDA-type glutamate receptors and medial prefrontal (mPFC) and insula glutamatergic inputs to the NAcore are necessary for aversion-resistant alcohol consumption in rats. Aversion-resistant intake was associated with a new type of NMDA receptor adaptation, in which hyperpolarization-active NMDA receptors were present at mPFC and insula but not amygdalar inputs in the NAcore. Accordingly, inhibition of Grin2c NMDA receptor subunits in the NAcore reduced aversion-resistant alcohol intake. None of these manipulations altered intake when alcohol was not paired with an aversive consequence. Our results identify a mechanism by which hyperpolarization-active NMDA receptors under mPFC- and insula-to-NAcore inputs sustain aversion-resistant alcohol intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.