Conformational preferences and electronic interactions of trans-2-fluorocyclopentanol (1), trans-2-chlorocyclopentanol (2), and trans-2-bromocyclopentanol (3) were analyzed using experimental and theoretical (3)J(HH) coupling constants, theoretical calculations, and natural bond orbital (NBO) analysis. The conformational equilibria of compounds 1-3 can be represented by their diaxial and diequatorial conformers as supported by theoretical calculations. From (3)J(HH) coupling constant values, it can be found that the diequatorial conformer is present in the equilibrium as 55% for compound 1 and as 60% for compounds 2 and 3. This behavior is in agreement with orbital interaction analyses obtained from NBO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.