We report a theoretical investigation of the electrohydrodynamic properties of spherical soft particles composed of permeable concentric layers that differ in thickness, soft material density, chemical composition, and flow penetration degree. Starting from a recent numerical scheme developed for the computation of the direct-current electrophoretic mobility (mu) of diffuse soft bioparticles, the dependence of mu on the electrolyte concentration and solution pH is evaluated taking the known three-layered structure of bacteriophage MS2 as a supporting model system (bulk RNA, RNA-protein bound layer, and coat protein). The electrokinetic results are discussed for various layer thicknesses, hydrodynamic flow penetration degrees, and chemical compositions, and are discussed on the basis of the equilibrium electrostatic potential and hydrodynamic flow field profiles that develop within and around the structured particle. This study allows for identifying the cases where the electrophoretic mobility is a function of the inner structural and chemical specificity of the particle and not only of its outer surface properties. Along these lines, we demonstrate the general inapplicability of the notions of zeta potential (zeta) and surface charge for quantitatively interpreting electrokinetic data collected for such systems. We further shed some light on the physical meaning of the isoelectric point. In particular, numerical and analytical simulations performed on structured soft layers in indifferent electrolytic solution demonstrate that the isoelectric point is a complex ionic strength-dependent signature of the flow permeation properties and of the chemical and structural details of the particle. Finally, the electrophoretic mobilities of the MS2 virus measured at various ionic strength levels and pH values are interpreted on the basis of the theoretical formalism aforementioned. It is shown that the electrokinetic features of MS2 are to a large extent determined not only by the external proteic capsid but also by the chemical composition and hydrodynamic flow permeation of/within the inner RNA-protein bound layer and bulk RNA part of the bacteriophage. The impact of virus aggregation, as revealed by decreasing diffusion coefficients for decreasing pH values, is also discussed.
The interactions of bacteria with their environment are governed by a complex interplay between biological and physicochemical phenomena. The main challenge is the joint determination of the intertwined interfacial characteristics of bacteria such as mechanical and hydrodynamic softness, interfacial heterogeneity, and electrostatic properties. In this study, we have combined electrokinetics and force spectroscopy to unravel this intricate coupling for two types of Shewanella bacterial strains that vary according to the nature of their outer, permeable, charged gel-like layers. The theoretical interpretation of the bacterial electrokinetic response allows for the estimation of the hydrodynamic permeability, degree of interfacial heterogeneity, and volume charge density for the soft layer that constitutes the outer permeable part of the bacteria. Additionally, the electrostatic interaction forces between an AFM probe and the bacteria were calculated on the basis of their interfacial properties obtained from advanced soft particle electrokinetic analysis. For both bacterial strains, excellent agreement between experimental and theoretical force curves is obtained, which highlights the necessity to account for the interfacial heterogeneity of the bioparticle to interpret AFM and electrokinetic data consistently. From the force profiles, we also derived the relevant mechanical parameters in relation to the turgor pressure within the cell and the nature of the bacterial outer surface layer. These results corroborate the heterogeneous representation of the bacterial interface and show that the decrease in the turgor pressure of the cell with increasing ionic strength is more pronounced for bacteria with a thin surface gel-like layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.