Background Caveolin-1 (CAV-1) is a cholesterol-dependent essential component located in caveolae. Several studies have been CAV-1 related to cardio-metabolic parameters in animal models, however, there are few studies in humans. Importantly, there is no study has investigated the interaction between CAV-1 rs3807992 gene and dietary patterns (DPs) on cardio-metabolic risk factors. Methods The current cross-sectional study was conducted on 404 overweight and obese women. Dietary intake was obtained from FFQ with 147 items. The CAV-1 genotype was measured by the PCR-RFLP method. The anthropometric measurements, serum lipid profile, and inflammatory markers were measured by standard protocols. Results There was a significant interaction between CAV-1 rs3807992 and healthy DP on high-density cholesterol (HDL) (P-interaction = 0.03), TC/HDL (P-interaction = 0.03) and high sensitivity C-reactive protein (hs-CRP) (P-interaction = 0.04); in A-allele carriers, higher following a healthy DP was related to a higher level of HDL and lower TC/HDL and hs-CRP. As well as, the significant interactions were observed between CAV-1 rs3807992 and unhealthy DP in relation to triglyceride (TG) (P-interaction = 0.001), aspartate aminotransferase (AST) (P-interaction = 0.01) and monocyte chemoattractant protein-1(MCP-1) (P-interaction = 0.01); A-allele carriers were more following the unhealthy DP had lower levels of TG, AST and MCP-1. Conclusions Our study revealed a significant gene-diet interaction between rs3807992 SNPs and DPs in relation to cardio-metabolic risk factors; A-allele carriers might be more sensitive to dietary composition compared to GG homozygotes. Following a healthy DP in A-allele-carriers may be improved their genetic association with cardio-metabolic risk factors.
Gene–diet interactions may play an important role in the inter individual diversity observed in on cardiovascular disease (CVD) risk factors. Therefore, in the current study, we examined the interaction of CETP TaqB1 polymorphism with dietary insulin index and load (DII and DIL), in altering on CVD risk factors among type 2 diabetes mellitus (T2DM). In this cross-sectional study, blood samples were collected from 220 type 2 diabetic patients (134 females and 86 male) with a mean age of 52.24 years in Tehran, Iran. DIL and DII were obtained via validated food-frequency questionnaire (FFQ). Taq1B polymorphism was genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Biochemical markers including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), superoxide dismutase (SOD), C-reactive protein (CRP), total antioxidant capacity (TAC), pentraxin-3 (PTX3), isoprostaneF2α (PGF2α). interleukin 18 (IL18), leptin and ghrelin were measured by standard protocol. Patients with B1B1 genotype had lower lipid profiles include LDL/HDL (P < 0.001) and TG (P = 0.04) when they consumed diets higher on the DIL and DII index. Moreover, carriers of B2B2 genotype who were in the last tertile of DIL had higher antioxidant and inflammatory markers include SOD (P = 0.01), PGF2α (P = 0.04) and CRP (P = 0.02). Further, a significant interaction between CETP TaqB1 and DII was shown in terms of WC (P = 0.01), where the highest WC were observed in B2B2 genotype carriers following a DII score. However, the highest inflammatory and antioxidant markers include CRP (P = 0.04), TAC (P = 0.01), SOD (P = 0.02), and PGF2α (P = 0.02) were observed in B2B2 genotype carriers when they consumed diets higher on the DII index. Based on the current study, it could be proposed that CETP polymorphism may be associated with CVD risk factors in T2DM patients with high following insulin indices, including DII and DIL. It seems that CETP Taq1B polymorphism can invert the result produced by insulin. This conclusion illustrates that the CETP Taq1B B1 allele could counteract the CVD risk induced by high DII and DIL.
Background The present study aimed to investigate the effect of the interaction between peroxisome proliferator‐activated receptor gamma (PPAR‐γ) Pro12Ala polymorphisms and dietary insulin load and insulin index (DIL and DII) on cardio‐metabolic markers among diabetic patients. Methods This cross‐sectional study was conducted on 393 diabetic patients. A food‐frequency questionnaire was used for DIL and DII calculation. PPAR‐γ Pro12Ala was genotyped by a polymerase chain reaction‐restriction fragment length polymorphism method. Biochemical markers, including total cholesterol, low‐density lipoprotein, high‐density lipoprotein, triglyceride, superoxide dismutase, C‐reactive protein, total antioxidant capacity, pentraxin‐3, isoprostaneF2α, interleukin‐18, leptin and ghrelin, were measured by a standard protocol. Results Risk‐allele carriers (CG, GG) had higher obesity indices [body mass index (pinteraction = 0.006) and WC (pinteraction = 0.04)] compared to individuals with the CC genotype when they consumed a diet with higher DIL and DII respectively. Besides, carriers of the G‐allele who were in the highest tertile of DIL had lower high‐density lipoprotein (pinteraction = 0.04) and higher isoprostaneF2α (pinteraction = 0.03) and pentraxin‐3 (pinteraction = 0.03). Moreover, the highest tertile of the DII, showed an increase in interleukin‐18 (pinteraction = 0.01) and lower superoxide dismutase (pinteraction = 0.03) for risk‐allele carriers compared to those with CC homozygotes. Conclusions We revealed that the PPAR‐γ Pro12Ala polymorphism was able to intensify the effect of DIL and DII on cardiovascular disease risk factors; risk‐allele carriers who consumed a diet with high DIL and DII score were more likely to be obese and have higher inflammatory markers. Also, protective factors against cardiovascular disease risk factors were reduced significantly in this group compared to CC homozygotes.
Objective The increased prevalence of metabolic dyslipidemia (MD) and its association with a variety of disorders raised a lot of attention to its management. Caveolin 1 (CAV1) the key protein in the caval structure of plasma membranes is many cell types that play an important role in its function. (CAV1) is a known gene associated with obesity. Today, a novel diet recognized as the Mediterranean and Mediterranean-DASH Intervention for Neurodegenerative Delay diet (MIND) is reported to have a positive effect on overall health. Hence, we aimed to investigate the interactions between CAV1 polymorphism and MIND diet on the MD in overweight and obese patients. Results Remarkably, there was a significant interaction between the MIND diet and CAV1 rs3807992 for dyslipidemia (β = − 0.25 ± 132, P = 0.05) in the crude model. Whereby, subjects with dominant alleles had a lower risk of dyslipidemia and risk allele carriers with higher adherence to the MIND diet may exhibit the lower dyslipidemia. This study presented the CAV1 gene as a possible genetic marker in recognizing people at higher risks for metabolic diseases. It also indicated that using the MIND diet may help in improving dyslipidemia through providing a probable interaction with CAV1 rs3807992 polymorphism.
Brain-derived neurotrophic factor (BDNF) belongs to the “neurotrophin” family of growth factors, and it has recently been associated to cardiovascular disease (CVD). We anticipated that BDNF Val66Met polymorphisms may alter CVD risk markers such as serum lipid profile differences, and interaction with total antioxidant capacity of diet (DTAC) could alter these clinical parameters. This cross-sectional study consisted of 667 diabetic patients (39.7% male and 60.3% female). DTAC was calculated by international databases. Biochemical markers including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), superoxide dismutase (SOD), C-reactive protein (CRP), total antioxidant capacity (TAC), pentraxin-3 (PTX3), isoprostaneF2α (PGF2α). interleukin 18 (IL18), leptin and ghrelin were measured by standard protocol. Atherogenic indices (AIP, AC, CR-I, CR-II) were calculated. Genotyping of the BDNF Val66Met polymorphisms was conducted by the real-time PCR–RFLP method. The gene-diet interactions were evaluated using a generalized linear mode (GLMs). Carriers of the Val/Met genotype who were in the higher median intake of FRAP had lower HDL (P:0.04) and higher TG (P:0.005), AIP (P:0.02) and AC (P:0.02) index compared to Val/Val genotypes with lower median intake. Moreover, diabetic patients with Val/Met genotype who consumed higher ORAC intake had increased odds for anthropometric indices (BMI (P:0.01) and WC (P:0.03)), lipid profiles (TG) (P:0.01), and atherogenic index (AIP) (P:0.02), also decreased odds for HDL (P:0.03) concentration compared to reference group whit lower ORAC intake. Individuals with Val/Met genotype who consumed higher TRAP intake had increased odds for WC (P:0.04), TC (P:0.001), TG (P < 0.001), AIP (P < 0.001) and AC (P < 0.001). Finally, Val/Met patients with a higher median intake of TEAC had higher TG (P:0.02), AIP (P:0.009) and AC (P:0.03) compared to the reference group whit lower TEAC intake. Our study showed that Val/Met genotype had also the highest lipid profile and atherogenic indices even in the highest adherence to DTAC. While it seems that the presence of the Val/Val wild-type and BDNF Met/Met homozygotes in diabetic patients with a high DTAC is a protective factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.