The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives.
Solar photon‐to‐electron conversion with polymer solar cells (PSCs) has experienced rapid development in the recent few years. Even so, the exploration of molecules and devices in efficiently converting near‐infrared (NIR) photons into electrons remains critical, yet challenging. Herein presented is a family of near‐infrared nonfullerene acceptors (NIR NFAs, T1–T4) with fluorinated regioisomeric A–Aπ–D–Aπ–A backbones for constructing efficient single‐junction and tandem PSCs with photon response up to 1000 nm. It is found that the tuning of the regioisomeric bridge (Aπ) and fluoro (F)‐substituents on a molecular skeleton strongly influences the backbone conformation and conjugation, leading to the optimized optoelectronic and stable stacking of resultant NFAs, which eventually impacts the performance of derived PSCs. In PSCs, the proximal NFAs with varied F‐atoms (T1–T3) mostly outperform than that of distal NFA (T4). Notably, single‐junction PSC with PTB7‐Th:T2 blend can reach 10.87% power conversion efficiency (PCE), after implementing a solvent additive to improve blend morphology. Moreover, efficient tandem PSCs are fabricated through integrating such NIR cells with mediate bandgap nonfullerene‐based subcells, to achieve a PCE of 14.64%. The results reveal the structural design of organic semiconductor and device with improved photovoltaic performance.
The photon energy losses of polymer solar cells (PSCs) routinely drag their experimental power conversion efficiencies (PCEs) far below the theoretical limits. We report herein efficient triple-junction PSCs (TJ-PSCs) with mitigated energy losses through rational selection of subcells. We reveal that avoiding strong photon competition between the front and middle cells is critical in balancing the absorption rate among subcells with realistic layer thicknesses. Efficient TJ-PSCs are achieved by stacking a front cell of PBDB-T-2F:PC71BM, a middle cell of PBDB-T:HF-TCIC, and a rear cell of PTB7-Th: IEICO-4F in series and connecting them with two functional interconnection layers. A PCE of 13.09% is obtained from champion devices, representing one of the best TJ-PSCs among the reported studies. It accounts for a 35% improvement in efficiency over those of single-junction PSCs with the same absorption range, which is mainly attributed to the reduced nonabsorbing and thermalization losses of TJ-PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.