In this study, Ougan juice (OJ) and lactic acid bacteria fermented Ougan juice (FOJ) were investigated individually for their capability of preventing obesity in high-fat diet (HFD)-fed C57BL/6J mice. After...
Poncirin (PC) and its aglycone, isosakuranetin (IR), occur naturally in citrus fruits. This study aimed to explore the pathways behind the different health benefits of PC and IR by evaluating the effect of these two bioactive flavonoids on the gut microbial diversity and metabolomics of mice. The 16S rRNA gene sequencing was used to analyze the alteration of gut microbiota in mice after PC and IR intervention. The metabolic impact of PC and IR in mice were studied using a metabolomics approach based on LC-MS analysis. Results showed that, after 7 days intervention, PC and IR multiplied the abundance of Parabacteroides in mice’s intestinal tracts by 1.2 and 1.0 times, respectively. PC increased the abundance of Bacteroides by 2.4 times. IR reduced the Allobaculum abundance by 1.0 time and increased Alloprevotella abundance by 1.5 times. When mice were given PC, their fecal acetic acid level increased by 1.8 times, while their isobutyric and isovaleric acid content increased by 1.2 and 1.3 times, respectively. Supplementation with IR had no significant effect on the content of short-chain fatty acids (SCFAs) in the feces of mice. The potential urine biomarkers of mice in the PC group were involved in the digestion and absorption of protein and carbohydrate, as well as the metabolism of amino acids, such as glycine, serine, threonine, tryptophan, D-arginine, D-ornithine, etc. IR mainly affected the amino acid metabolic pathways in mice, including taurine and hypotaurine metabolism, glutathione metabolism, histidine metabolism, D-glutamate metabolism, etc. This study provided valuable clues for future research on the health promoting mechanisms of PC and IR.
Grapefruit has attracted much attention as a functional fruit, of which “Cocktail” is a special variety with low acidity. The present study aimed to investigate the effects of alcoholic fermentation on the non-volatile and volatile compounds of “Cocktail” grapefruit juice. To analyze, a non-targeted metabolomics method based on UPLC-MS/MS and volatiles analysis using GC-IMS were performed. A total of 1015 phytochemicals were identified, including 296 flavonoids and 145 phenolic acids, with noticeably increasing varieties and abundance following the fermentation. Also 57 volatile compounds were detected, and alcoholic fermentation was effective in modulating aromatic profiles of grapefruit juice, with terpenes and ketones decreasing, and alcohols increasing together with esters. Citraconic acid and ethyl butanoate were the most variable non-volatile and volatile substances, respectively. The results provide a wealth of information for the study of “Cocktail” grapefruit and will serve as a valuable reference for the large-scale production of grapefruit fermented juice in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.