Non-Pharmaceutical Public Health Interventions (NPHIs) have been used by different countries to control the spread of the COVID-19. Despite available evidence regarding the effectiveness of NPHSs, there is still no consensus about how policymakers can trust these results. Studies on the effectiveness of NPHSs are single studies conducted in specific communities. Therefore, they cannot individually prove if these interventions have been effective in reducing the spread of the infection and its adverse health outcomes. In this systematic review, we aimed to examine the effects of NPHIs on the COVID-19 case growth rate, death growth rate, Intensive Care Unit (ICU) admission, and reproduction number in countries, where NPHIs have been implemented. We searched relevant electronic databases, including Medline (via PubMed), Scopus, CINAHL, Web of Science, etc. from late December 2019 to February 1, 2021. The key terms were primarily drawn from Medical Subject Heading (MeSh and Emtree), literature review, and opinions of experts. Peer-reviewed quasi-experimental studies were included in the review. The PROSPERO registration number is CRD42020186855. Interventions were NPHIs categorized as lockdown, stay-at-home orders, social distancing, and other interventions (mask-wearing, contact tracing, and school closure). We used PRISMA 2020 guidance for abstracting the data and used Cochrane Effective Practice and Organization of Practice (EPOC) Risk of Bias Tool for quality appraisal of the studies. Hartung-Knapp-Sidik-Jonkman random-effects model was performed. Main outcomes included COVID-19 case growth rate (percentage daily changes), COVID-19 mortality growth rate (percentage daily changes), COVID-19 ICU admission (percentage daily changes), and COVID-19 reproduction number changes. Our search strategies in major databases yielded 12,523 results, which decreased to 7,540 articles after eliminating duplicates. Finally, 35 articles qualified to be included in the systematic review among which 23 studies were included in the meta-analysis. Although studies were from both low-income and high-income countries, the majority of them were from the United States (13 studies) and China (five studies). Results of the meta-analysis showed that adoption of NPHIs has resulted in a 4.68% (95% CI, -6.94 to -2.78) decrease in daily case growth rates, 4.8% (95 CI, -8.34 to -1.40) decrease in daily death growth rates, 1.90 (95% CI, -2.23 to -1.58) decrease in the COVID-19 reproduction number, and 16.5% (95% CI, -19.68 to -13.32) decrease in COVID-19 daily ICU admission. A few studies showed that, early enforcement of lockdown, when the incidence rate is not high, contributed to a shorter duration of lockdown and a lower increase of the case growth rate in the post-lockdown era. The majority of NPHIs had positive effects on restraining the COVID-19 spread. With the problems that remain regarding universal access to vaccines and their effectiveness and considering the drastic impact of the nationwide lockdown and other harsh restrictions on the economy and people’s life, such interventions should be mitigated by adopting other NPHIs such as mass mask-wearing, patient/suspected case isolation strategies, and contact tracing. Studies need to address the impact of NPHIs on the population’s other health problems than COVID-19.
This meta-analysis aimed to evaluate the prognostic value of tumor-infiltrating lymphocytes (TILs) and programmed death-ligand 1 (PD-L1), their associations with the clinicopathological characteristics, and the association between their levels in patients with triple-negative breast cancer (TNBC). PubMed, EMBASE, Scopus, ProQuest, Web of Science, and Cochrane Library databases were searched to obtain the relevant papers. Seven studies with 1152 patients were included in this study. Like the level of TILs, there were no significant associations between PD-L1 expression and tumor size, tumor stage, lymph node metastasis, histological grade, and Ki67 (All p-values ≥ 0.05). Furthermore, there was no significant association between PD-L1 expression with overall survival (OS) and disease-free survival (DFS). In assessment of TILs and survival relationship, the results showed that a high level of TILs was associated with long-term OS (hazard ratios (HR) = 0.48, 95% CI: 0.30 to 0.77, p-value < 0.001) and DFS (HR = 0.53, 95% CI: 0.35 to 0.78, p-value < 0.001). The results displayed that tumoral PD-L1 expression was strongly associated with high levels of TILs in TNBC patients (OR = 8.34, 95% CI: 2.68 to 25.95, p-value < 0.001). In conclusion, the study has shown the prognostic value of TILs and a strong association between tumoral PD-L1 overexpression with TILs in TNBC patients.
Background Without any pharmaceutical intervention and vaccination, the only way to combat Coronavirus Disease 2019 (COVID-19) is to slow down the spread of the disease by adopting nonpharmaceutical public health interventions (PHIs). Patient isolation, lockdown, quarantine, social distancing, changes in health care provision, and mass screening are the most common non-pharmaceutical PHIs to cope with the epidemic. However, there is neither systematic evidence on the effectiveness of non-pharmaceutical PHIs in controlling the COVID-19 nor on how these interventions work in different contexts. Therefore, in this study we will address two main objectives: 1) to assess the effectiveness of the non-pharmaceutical PHIs in controlling the spread of COVID-19 using a systematic review and meta-analyses; 2) to explore why, how, and for whom these interventions work using a realist review. Materials and methods This review study has two main phases. In the first phase of this study, we will extract data from two main types of studies including quasi-experimental studies (such as quasi-randomized trials, controlled before-after studies (CBAs) and interrupted time series studies (ITSs)) and observational studies (such as cohort, case-control, and cross-sectional studies), written in the English language. We will explore effectiveness of the non-pharmaceutical PHIs targeted either suppression or mitigation strategies (or a combination of both) in controlling the COVID-19 epidemics in the community level. Effectiveness will be considered as the changes in mortality rate, incidence rate, basic reproduction number rate, morbidity rate, rates of hospitalization, rates of intensive care unit (ICU) hospitalization, and other health This is a Registered Report and may have an associated publication; please check the article page on the journal site for any related articles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.