Optical communication networks (OCNs) provide promising and cost-effective support for the ultra-fast broadband solutions, thus enabling them to address the ever growing demands of telecommunication industry such as high capacity and end users’ data rate. OCNs are used in both wired and wireless access networks as they offer many advantages over conventional copper wire transmission such as low power consumption, low cost, ultra-high bandwidth, and high transmission rates. Channel effects caused by light propagation through the fiber limits the performance, hence the data rate of the overall transmission. To achieve the maximum performance gain in terms of transmission rate through the OCN, an optical downlink system is investigated in this paper using feed forward equalizer (FFE) along with decision feedback equalizer (DFE). The simulation results show that the proposed technique plays a key role in dispersion mitigation in multi-channel optical transmission to uphold multi-Gb/s transmission. Moreover, bit error rate (BER) and quality factor (Q-factor) below 10 − 5 and above 5, respectively, are achieved with electrical domain equalizers for the OCN in the presence of multiple distortion effects showing the effectiveness of the proposed adaptive equalization techniques.
Fiber optic communication systems (FOCSs) have attained a lot of attention by revolutionizing the telecommunication industry and offering new possibilities with the technical advancements in state-of-the-art high speed digital electronics. Advanced modulation formats make use of the phase, amplitude, and polarization of the optical signals at the same time to provide high spectral efficiency as compared with 1 bit/s/Hz for the intensity modulation direct detection system (IMDD), but are highly prone to transmission impairments. Thus, the effects that add up to the optical fiber impairments such as optical fiber chromatic dispersion (OFCD), polarization model dispersion (PMD), and phase offset and noise (POaN) need to be addressed at the receiver side. The development of components and algorithms to minimize these effects in next generation FOCSs with 100 Gbps data rate and beyond with long-haul transmission is still a challenging issue. In this paper, digital signal processing- (DSP-) assisted dispersion and nonlinear compensation techniques are presented to compensate for physical layer impairments including OFCD, PMD, and POaN. The simulations are performed considering Dual Polarization- (DP-) QPSK modulation format to achieve two-fold data rate to achieve spectral efficiency of 3.28 bits/s/Hz by making use of the polarization diversity and system performance is investigated in terms of bit error rate (BER), constellation diagrams, and quality factor (Q-factor) for different values of optical signal-to-noise ratio (OSNR), launch power (PL), and fiber length.
High-capacity and long-haul transmission gained great significance in modern communication networks. Optical fiber communication system is good enough to face the high demand of current telecom terrific. This paper will propound the theoretical model showing nonlinear factors which degrade the transmission performances of high-capacity long-haul network. The postulatory model will be validated using simulation of key nonlinear factors such as effective area, launch power, refractive index and fiber length. The transmission performance of the high-capacity long-haul optical network would be analyzed on the basis of some key parameters such as bit error rate and signal-to-noise ratio. Mitigation of nonlinear impairments shows significant impact on transmission performances of high-capacity long-haul optical networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.