Behavioral studies in humans indicate that peripheral vision can do object recognition to some extent. Moreover, recent studies have shown that some information from brain regions retinotopic to visual periphery is somehow fed back to regions retinotopic to the fovea and disrupting this feedback impairs object recognition in human. However, it is unclear to what extent the information in visual periphery contributes to human object categorization. Here, we designed two series of rapid object categorization tasks to first investigate the performance of human peripheral vision in categorizing natural object images at different eccentricities and abstraction levels (superordinate, basic, and subordinate). Then, using a delayed foveal noise mask, we studied how modulating the foveal representation impacts peripheral object categorization at any of the abstraction levels. We found that peripheral vision can quickly and accurately accomplish superordinate categorization, while its performance in finer categorization levels dramatically drops as the object presents further in the periphery. Also, we found that a 300-ms delayed foveal noise mask can significantly disturb categorization performance in basic and subordinate levels, while it has no effect on the superordinate level. Our results suggest that human peripheral vision can easily process objects at high abstraction levels, and the information is fed back to foveal vision to prime foveal cortex for finer categorizations when a saccade is made toward the target object.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.