Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa. Bactrocera (Bactrocera) dorsalis (Hendel)
In Africa, livestock production currently accounts for about 30% of the gross value of agricultural production. However, production is struggling to keep up with the demands of expanding human populations, the rise in urbanization and the associated shifts in diet habits. High costs of feed prevent the livestock sector from thriving and to meet the rising demand. Insects have been identified as potential alternatives to the conventionally used protein sources in livestock feed due to their rich nutrients content and the fact that they can be reared on organic side streams. Substrates derived from organic by-products are suitable for industrial large-scale production of insect meal. Thus, a holistic comparison of the nutritive value of Black Soldier Fly larvae (BSFL) reared on three different organic substrates, i.e. chicken manure (CM), brewers’ spent grain (SG) and kitchen waste (KW), was conducted. BSFL samples reared on every substrate were collected for chemical analysis after the feeding process. Five-hundred (500) neonatal BSFL were placed in 23 × 15 cm metallic trays on the respective substrates for a period of 3–4 weeks at 28 ± 2 °C and 65 ± 5% relative humidity. The larvae were harvested when the prepupal stage was reached using a 5 mm mesh size sieve. A sample of 200 grams prepupae was taken from each replicate and pooled for every substrate and then frozen at −20 °C for chemical analysis. Samples of BSFL and substrates were analyzed for dry matter (DM), crude protein (CP), ether extracts (EE), ash, acid detergent fibre (ADF), neutral detergent fibre (NDF), amino acids (AA), fatty acids (FA), vitamins, flavonoids, minerals and aflatoxins. The data were then subjected to analysis of variance (ANOVA) using general linear model procedure. BSFL differed in terms of nutrient composition depending on the organic substrates they were reared on. CP, EE, minerals, amino acids, ADF and NDF but not vitamins were affected by the different rearing substrates. BSFL fed on different substrates exhibited different accumulation patterns of minerals, with CM resulting in the largest turnover of minerals. Low concentrations of heavy metals (cadmium and lead) were detected in the BSFL, but no traces of aflatoxins were found. In conclusion, it is possible to take advantage of the readily available organic waste streams in Kenya to produce nutrient-rich BSFL-derived feed.
To support management decisions, molecular characterization of data and geo-reference of incidence records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) were combined with data on the biology and ecology of the pest to estimate its climatic suitability and potential spread at regional and global scale. A CLIMEX model was developed and used for the global prediction of current and future climate-induced changes in the distributional shifts of T. absoluta. Results revealed that temperature and moisture characterized T. absoluta population growth while the pest ability to survive the cold, hot, wet and dry stress conditions are the primary characteristics defining its range frontiers. Simulated irrigation also played an important role in the model optimization. Model predictions suggest that T. absoluta represents an important threat to Africa, Asia, Australia, Northern Europe, New Zealand, Russian Federation and the United States of America (USA). Under climate change context, future predictions on distribution of T. absoluta indicated that the invasive nature of this pest will result in significant crop losses in certain locations whereas some parts of Africa may witness diminution in ranges. The following scenarios may occur: 1) T. absoluta damage potential may upsurge moderately in areas of Africa where the pest currently exists; 2) a range diminution in temperate to Sahel region with moderate upsurge in damage potential; 3) a range expansion in tropical Africa with reasonable upsurge of damage potential. These possible outcomes could be explained by the fact that the continent is already warm, with the average temperature in majority of localities near the threshold temperatures for optimal development and survival of T. absoluta. Outputs from this study should be useful in helping decision-makers in their assessment of site-specific risks of invasion and spread of T. absoluta with a view to developing appropriate surveillance, phytosanitary measures and management strategies.
Efforts to recycle organic wastes using black soldier fly (BSF) Hermetia illucens into high-nutrient biomass that constitutes a sustainable fat (biodiesel) and high-quality protein ingredient in animal feeds have recently gained momentum worldwide. However, there is little information on the most suitable rearing conditions for growth, development and survivorship of these flies, which is a prerequisite for mass production technologies. We evaluated the physiological requirements for growth and reproduction of H. illucens on two diets [spent grains supplemented with brewers’ yeast (D1) and un-supplemented (D2)]. Development rates at nine constant temperatures (10–42°C) were fitted to temperature-dependent linear and non-linear day-degree models. Thereafter, life history table parameters were determined within a range of favourable temperatures. The thermal maximum (TM) estimates for larval, pre-pupal and pupal development using non-linear model ranged between 37.2 ± 0.3 and 44.0 ± 2.3°C. The non-linear and linear day-degree model estimations of lower developmental temperature threshold for larvae were 11.7 ± 0.9 and 12.3 ± 1.4°C for D1, and 10.4 ± 1.7 and 11.7 ± 3.0°C for D2, respectively. The estimated thermal constant of immature life stages development of BSF was higher for the larval stage (250±25 DD for D1 and 333±51 for D2) than the other stages evaluated. Final larval wet weight was higher on D1 compared to D2. The population growth rate was most favourable at 30-degree celsius (°C) with higher intrinsic rate of natural increase (rm = 0.127 for D1 and 0.122 for D2) and shorter doubling time (5.5 days for D1 and 5.7 days for D2) compared to the other temperatures. These results are valuable for the optimization of commercial mass rearing procedures of BSF under various environmental conditions and prediction of population dynamics patterns using computer simulation models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.