Purpose The Language Environment Analysis (LENA) system provides automated measures facilitating clinical and nonclinical research and interventions on language development, but there are only a few, scattered independent reports of these measures' validity. The objectives of the current systematic review were to (a) discover studies comparing LENA output with manual annotation, namely, accuracy of talker labels, as well as involving adult word counts (AWCs), conversational turn counts (CTCs), and child vocalization counts (CVCs); (b) describe them qualitatively; (c) quantitatively integrate them to assess central tendencies; and (d) quantitatively integrate them to assess potential moderators. Method Searches on Google Scholar, PubMed, Scopus, and PsycInfo were combined with expert knowledge, and interarticle citations resulting in 238 records screened and 73 records whose full text was inspected. To be included, studies must target children under the age of 18 years and report on accuracy of LENA labels (e.g., precision and/or recall) and/or AWC, CTC, or CVC (correlations and/or error metrics). Results A total of 33 studies, in 28 articles, were discovered. A qualitative review revealed most validation studies had not been peer reviewed as such and failed to report key methodology and results. Quantitative integration of the results was possible for a broad definition of recall and precision ( M = 59% and 68%, respectively; N = 12–13), for AWC (mean r = .79, N = 13), CVC (mean r = .77, N = 5), and CTC (mean r = .36, N = 6). Publication bias and moderators could not be assessed meta-analytically. Conclusion Further research and improved reporting are needed in studies evaluating LENA segmentation and quantification accuracy, with work investigating CTC being particularly urgent. Supplemental Material https://osf.io/4nhms/
Previous research has found that when learners encounter multiple artificial languages in succession only the first is learned, unless there are contextual cues correlating with the change in structure or if exposure to the second language is protracted. These experiments provided a fixed amount of exposure irrespective of when learning occurred. Here, we presented learners with two consecutive artificial languages testing learning after each minute of familiarization. In Experiment 1, learners received fixed input, and we replicated the primacy effect. In Experiment 2, learners advanced to the second language immediately following robust learning of the first language (thereby limiting additional exposure past the point of learning). Remarkably, learners tended to acquire and retain both languages, although contextual cues did not boost performance further. Notably, there was no correlation between performance on this task and a flanker task that measured inhibitory control. Overall, our findings suggest that anchoring effects in statistical learning may be due to overlearning. We speculate that learners may reduce their attention to the input once they achieve a low level of estimation uncertainty.
The LENA system has revolutionized research on language acquisition, providing both a wearable device to collect daylong recordings of children's environments, and a set of automated outputs that process, identify, and classify speech using proprietary algorithms. This output includes information about input sources (e.g., adult male, electronics). While this system has been tested across a variety of settings, here we delve deeper into validating the accuracy and reliability of LENA's automated diarization, i.e., tags of who is talking. Specifically, we compare LENA's output with a gold standard set of manually generated talker tags from a dataset of 88 day-long recordings, taken from 44 infants at 6 and 7 months, which includes 57,983 utterances. We compare accuracy across a range of classifications from the original Lena Technical Report, alongside a set of analyses examining classification accuracy by utterance type (e.g., declarative, singing). Consistent with previous validations, we find overall high agreement between the human and LENA-generated speaker tags for adult speech in particular, with poorer performance identifying child, overlap, noise, and electronic speech (accuracy range across all measures: 0-92%). We discuss several clear benefits of using this automated system alongside potential caveats based on the error patterns we observe, concluding with implications for research using LENA-generated speaker tags.
Successful knowledge acquisition requires a cognitive system that is both sensitive to statistical information and able to distinguish among multiple structures (i.e., to detect pattern shifts and form distinct representations). Extensive behavioral evidence has highlighted the importance of cues to structural change, demonstrating how, without them, learners fail to detect pattern shifts and are biased in favor of early experience. Here, we seek a neural account of the mechanism underpinning this primacy effect in learning. During fMRI scanning, adult participants were presented with two artificial languages: a familiar language (L1) on which they had been pretrained followed by a novel language (L2). The languages were composed of the same syllable inventory organized according to unique statistical structures. In the absence of cues to the transition between languages, posttest familiarity judgments revealed that learners on average more accurately segmented words from the familiar language compared with the novel one. Univariate activation and functional connectivity analyses showed that participants with the strongest learning of L1 had decreased recruitment of fronto-subcortical and posterior parietal regions, in addition to a dissociation between downstream regions and early auditory cortex. Participants with a strong new language learning capacity (i.e., higher L2 scores) showed the opposite trend. Thus, we suggest that a bias toward neural efficiency, particularly as manifested by decreased sampling from the environment, accounts for the primacy effect in learning. Potential implications of this hypothesis are discussed, including the possibility that “inefficient” learning systems may be more sensitive to structural changes in a dynamic environment.
This is a preprint and has been accepted at Infancy as of December 2021. This work was supported by grants to EB (NIH-OD, DP5 OD019812-01) and FB (NIH-NICHD, F32 HD101216). We wish to thank all of the research assistants at Duke University who aided in recruitment and data collection, as well as those who helped record stimuli. The authors declare no conflicts of interest with regard to the funding source for this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.