For more than a century, fungal pathogens and symbionts have been known to orient hyphal growth towards chemical stimuli from the host plant. However, the nature of the plant signals as well as the mechanisms underlying the chemotropic response have remained elusive. Here we show that directed growth of the soil-inhabiting plant pathogen Fusarium oxysporum towards the roots of the host tomato (Solanum lycopersicum) is triggered by the catalytic activity of secreted class III peroxidases, a family of haem-containing enzymes present in all land plants. The chemotropic response requires conserved elements of the fungal cell integrity mitogen-activated protein kinase (MAPK) cascade and the seven-pass transmembrane protein Ste2, a functional homologue of the Saccharomyces cerevisiae sex pheromone 伪 receptor. We further show that directed hyphal growth of F. oxysporum towards nutrient sources such as sugars and amino acids is governed by a functionally distinct MAPK cascade. These results reveal a potentially conserved chemotropic mechanism in root-colonizing fungi, and suggest a new function for the fungal pheromone-sensing machinery in locating plant hosts in a complex environment such as the soil.
Exopolysaccharides (EPSs) are an important class of biopolymers with great ecological importance. In natural environments, they are a common feature of microbial biofilms, where they play key protective and structural roles. As the primary colonizers of constrained environments, such as desert soils and lithic and exposed substrates, cyanobacteria are the first contributors to the synthesis of the EPSs constituting the extracellular polymeric matrix that favors the formation of microbial associations with varying levels of complexity called biofilms. Cyanobacterial colonization represents the first step for the formation of biofilms with different levels of complexity. In all of the possible systems in which cyanobacteria are involved, the synthesis of EPSs contributes a structurally-stable and hydrated microenvironment, as well as chemical/physical protection against biotic and abiotic stress factors. Notwithstanding the important roles of cyanobacterial EPSs, many aspects related to their roles and the relative elicited biotic and abiotic factors have still to be clarified. The aim of this survey is to outline the state-of-the-art of the importance of the cyanobacterial EPS excretion, both for the producing cells and for the microbial associations in which cyanobacteria are a key component.
Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing) and Scytonema javanicum (N-fixing), on different textured soils (from silt loam to sandy), and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM) images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS) content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil fertility compared to non-inoculated soils was found in sandy and silty soils, which originally had lowest fertility. On the whole, the improvement in soil fertility and stability supports the viability of using cyanobacteria to restore degraded arid soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.