BackgroundCotton (Gossypium spp.) is one of the major fibre crops of the world. Although it is classified as salt tolerant crop, cotton growth and productivity are adversely affected by high salinity, especially at germination and seedling stages. Identification of genes and miRNAs responsible for salt tolerance in upland cotton (Gossypium hirsutum L.) would help reveal the molecular mechanisms of salt tolerance. We performed physiological experiments and transcriptome sequencing (mRNA-seq and small RNA-seq) of cotton leaves under salt stress using Illumina sequencing technology.ResultsWe investigated two distinct salt stress phases—dehydration (4 h) and ionic stress (osmotic restoration; 24 h)—that were identified by physiological changes of 14-day-old seedlings of two cotton genotypes, one salt tolerant and the other salt sensitive, during a 72-h NaCl exposure. A comparative transcriptomics was used to monitor gene and miRNA differential expression at two time points (4 and 24 h) in leaves of the two cotton genotypes under salinity conditions. The expression patterns of differentially co-expressed unigenes were divided into six groups using short time-servies expression miner software. During a 24-h salt exposure, 819 transcription factor unigenes were differentially expressed in both genotypes, with 129 unigenes specifically expressed in the salt-tolerant genotype. Under salt stress, 108 conserved miRNAs from known families were differentially expressed at two time points in the salt-tolerant genotype. We further analyzed the predicted target genes of these miRNAs along with the transcriptome for each time point. Important expressed genes encoding membrane receptors, transporters, and pathways involved in biosynthesis and signal transduction of calcium-dependent protein kinase, mitogen-activated protein kinase, and hormones (abscisic acid and ethylene) were up-regulated. We also analyzed the salt stress response of some key miRNAs and their target genes and found that the expressions of five of nine target genes exhibited significant inverse correlations with their corresponding miRNAs. On the basis of these results, we constructed molecular regulatory pathways and a potential regulatory network for these salt-responsive miRNAs.ConclusionsOur comprehensive transcriptome analysis has provided new insights into salt-stress response of upland cotton. The results should contribute to the development of genetically modified cotton with salt tolerance.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-760) contains supplementary material, which is available to authorized users.
Type 2 innate lymphoid cells (ILC2s) have been shown to produce large amounts of type 2 cytokines in a non-antigen-specific manner. These cytokines act upstream and downstream of ILC2 and are increasingly common in asthma drug development, thus warranting a closer investigation of the mechanism-related clinical manifestations of ILC2 in the selection of patients with asthma. We hypothesized that IL-13ILC2s in the circulation might correlate with asthma control status as a result of persistent T-helper cell type 2 (Th2) inflammation in the lung. Furthermore, we aimed to explore ILC2s' responsiveness to glucocorticoid. The percentages of ILC2s and IL-13ILC2s in different asthma subgroups were checked, and correlation analyses between ILC2s and asthma-related clinical parameters were performed. Dexamethasone treatments in ILC2s and Th2 cells were performed to clarify their response properties. ILC2s were identified as a LinCD45IL-7RαCRTH2 cell population distinct from human peripheral blood mononuclear cells. Frequencies of ILC2s were increased dramatically in those with asthma (0.04 ± 0.02%) compared with healthy donors (0.025 ± 0.011%). The percentages of IL-13ILC2s were significantly higher in patients in the uncontrolled group (49.7 ± 16.9%) and partly controlled groups (30.8 ± 13.1%) than in those in the well-controlled group (16.7 ± 5.9%) and healthy control subjects (18.7 ± 8.7%). Effective treatment of uncontrolled IL-13ILC2-positive patients with asthma resulted in dynamic modulation of IL-13ILC2 levels back to baseline. ILC2s were more resistant to glucocorticoid than Th2 cells in vitro. ILC2s are strong responders to IL-25/IL-33 stimulation. IL-13ILC2s show a positive correlation with patient asthma control status and are more resistant to glucocorticoid than Th2 cells in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.