Directed evolution has matured to a routinely applied algorithm to tailor enzyme properties to meet the demands in various applications. In order to free directed enzyme evolution from methodological restraints and to efficiently explore its potential, many different strategies have been used in directed evolution campaigns. Analysis of directed evolution campaigns reveals that traditional approaches, in which several iterative rounds of diversity generation and screening are performed, are gradually replaced by strategies which require less time, less screening efforts, and generate a molecular understanding of the targeted properties. In this review, conceptual advances in knowledge generating directed evolution strategies are summarized, compared to each other and to traditional directed evolution strategies. Finally, a 'KnowVolution' (knowledge gaining directed evolution) termed strategy is proposed.
The molecular mechanisms that cells use to sense changes in the intra- and extracellular environment are increasingly utilized in synthetic biology to build genetic reporter constructs for various applications. Although in nature sensing can be RNA-mediated, most existing genetically-encoded biosensors are based on transcription factors (TF) and cognate DNA sequences. Here, the recent advances in the integration of TF-based biosensors in metabolic and protein engineering screens whereas distinction is made between production-driven and competitive screening systems for enzyme evolution under physiological conditions are discussed. Furthermore, the advantages and disadvantages of existing TF-based biosensors are examined with respects to dynamic range, sensitivity, and robustness, and compared to other screening approaches. The application examples discussed in this review demonstrate the promising potential TF-based biosensors hold as screening tools in laboratory evolution of proteins and metabolic pathways, alike.
Arginine deiminase (ADI) is a therapeutic protein for cancer therapy of arginine-auxotrophic tumors. However, ADI's application as anticancer drug is hampered by its low activity for arginine under physiological conditions mainly due to its high "K M" (S₀.₅) values which are often 1 magnitude higher than the arginine concentration in blood (0.10-0.12 mM arginine in human plasma). Previous evolution campaigns were directed by us with the aim of boosting activity of PpADI (ADI from Pseudomonas plecoglossicida, k cat = 0.18 s(-1); S₀.₅ = 1.30 mM), and yielded variant M6 with slightly reduced S₀.₅ values and enhanced k cat (S₀.₅ = 0.81 mM; k cat = 11.64 s(-1)). In order to further reduce the S₀.₅ value and to increase the activity of PpADI at physiological arginine concentration, a more sensitive screening system based on ammonia detection in 96-well microtiter plate to reliably detect ≥0.005 mM ammonia was developed. After screening ~5,500 clones with the ammonia detection system (ADS) in two rounds of random mutagenesis and site-directed mutagenesis, variant M19 with increased k cat value (21.1 s(-1); 105.5-fold higher compared to WT) and reduced S₀.₅ value (0.35 mM compared to 0.81 mM (M6) and 1.30 mM (WT)) was identified. Improved performance of M19 was validated by determining IC₅₀ values for two melanoma cell lines. The IC₅₀ value for SK-MEL-28 dropped from 8.67 (WT) to 0.10 (M6) to 0.04 μg/mL (M19); the IC₅₀ values for G361 dropped from 4.85 (WT) to 0.12 (M6) to 0.05 μg/mL (M19).
A fatty acid photodecarboxylase (CvFAP) based photobiocatalytic deracemization of phosphinothricin (PPT) was developed. The engineered CvFAP enabled the kinetic resolution of racemic PPT on a gram scale, providing unreacted L-PPT...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.