Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process. Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, double-blind, paired, phase 3, superiority trial. Authorship Ina Jochmans (PhD), Aukje Brat (Medical degree), Lucy Davies (PhD) 4 , H. Sijbrand Hofker (Medical degree), Fenna E.M. van de Leemkolk (Medical degree), Henri G.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
Background. Abdominal normothermic regional perfusion (aNRP) for donation after circulatory death is an emerging organ preservation technique that might lead to increased organ utilization per donor by facilitating viability testing, improving transplant outcome by early reversal of ischemia, and decreasing the risk of unintentional surgical damage. The aim of the current review is to evaluate the recent literature on the added value of aNRP when compared to local standard perfusion technique. Methods. The Preferred Reporting Items for Systematic reviews and Meta-Analyses guideline for systematic reviews was used, and relevant literature databases were searched. Primary outcomes were organ utilization rate and patient and graft survival after 1 year. Secondary outcomes included delayed graft function, primary nonfunction, serum creatinine, and biliary complications. Results. A total of 24 articles were included in this review. The technique is unanimously reported to be feasible and safe, but the available studies are characterized by considerable heterogeneity and bias. Conclusions. Uniform reported outcome measures are needed to draw more definitive conclusions on transplant outcomes and organ utilization. A randomized controlled trial comparing aNRP with standard procurement technique in donation after circulatory death donors would be needed to show the added value of the procedure and determine its place among modern preservation techniques.
Acceptance of liver grafts from donations after circulatory death (DCD) largely remains a “black box,” particularly due to the unpredictability of the agonal phase. Abdominal normothermic regional perfusion (aNRP) can reverse ischemic injury early during the procurement procedure, and it simultaneously enables graft viability testing to unravel this black box. This review evaluates current protocols for liver viability assessment to decide upon acceptance or decline during aNRP. The Preferred Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA) guideline was used, and relevant literature databases were searched. The primary outcome consisted of criteria for liver graft viability assessment. Secondary outcomes included survival, primary nonfunction (PNF), early dysfunction, and biliary complications. A total of 14 articles were included in the analysis. In all protocols, a combination of criteria was used to assess suitability of the liver for transplantation. As many as 12 studies (86%) used macroscopic assessment, 12 studies (86%) used alanine transaminase (ALT) levels in perfusate, 9 studies (64%) used microscopic assessment, and 7 studies (50%) used lactate levels as assessment criteria. The organ utilization rate (OUR) was 16% for uncontrolled donation after circulatory death (uDCD) and 64% for controlled donation after circulatory death (cDCD). The most used acceptation criterion in uDCD is ALT level (31%), while in cDCD macroscopic aspect (48%) is most used. Regarding postoperative complications, PNF occurred in 13% (6%–25%) of uDCD livers and 3% (2%–4%) of cDCD livers. In uDCD, the 1‐year graft and patient survival rates were 75% (66%–82%) and 82% (75%–88%). In cDCD, the 1‐year graft and patient survival rates were 91% (89%–93%) and 93% (91%–94%), respectively. In conclusion, the currently used assessment criteria consist of macroscopic aspect and transaminase levels. The acceptance criteria should be tailored according to donor type to prevent an unacceptable PNF rate in uDCD and to increase the relatively modest OUR in cDCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.