Ca 2؉-ATPase inhibition by stoichiometric and substoichiometric concentrations of cyclopiazonic acid was studied in sarcoplasmic reticulum preparations from rabbit fast-twitch muscle. The apparent affinity of the nonphosphorylated enzyme for ATP showed a K d of ϳ3 M in the absence of cyclopiazonic acid and ϳ28 M in the presence of the drug. Fractional saturation of the enzyme by cyclopiazonic acid was accompanied by the appearance of two ATP-binding populations (enzyme with and without drug) and a progressive increase in the half-maximal concentration for saturating the ATPbinding sites. Enzyme turnover in the presence of stoichiometric concentrations of cyclopiazonic acid displayed lower apparent affinity for ATP and lower maximal hydrolytic activity than in the absence of the drug. When cyclopiazonic acid is in the substoichiometric range, the observed kinetic parameters will correspond to the simultaneous contribution of two different reaction cycles sustained by the enzyme with and without drug. The inhibition could be elicited by adding ATP to allow the enzyme turnover when cyclopiazonic acid was preincubated with the enzyme in the presence of Ca 2؉. The onset of inhibition during enzyme cycling was observed over a period of seconds, revealing the existence of a low inhibition rate constant. It is concluded that cyclopiazonic acid decreases enzyme affinity for ATP in non-turnover conditions by approximately one order of magnitude. This allows enzyme cycling after drug binding, provided that a high ATP concentration is used. Cyclopiazonic acid and ATP do not compete for the same binding site.
The affinity of sarcoplasmic reticulum Ca2+-ATPase for cyclopiazonic acid is dependent on the conformational state of the enzyme. It is high in the absence of Ca2+ but low in its presence. When Ca2+ was added to the enzyme in the presence of equimolar toxin, the apparent rate constant for Ca2+ binding was 0.6 min-1 when measured at 37 degrees C. The apparent equilibrium constant for Ca2+ dissociation increased from 0.2 to 0.6 microM at neutral pH, and from 5.9 to 37 microM at pH 6.0. The apparent equilibrium constant for Ca2+ dissociation increased progressively as the amount of toxin increased above an equimolar level. Cyclopiazonic acid decreased phosphorylation by ATP and Ca2+ when the enzyme in the absence of Ca2+ was incubated in the presence of toxin, although no effect was observed after a preliminary incubation with Ca2+ at 37 degrees C. Cyclopiazonic acid incubated with the enzyme in the presence of Ca2+ could be eliminated with a Sephadex column. However, the toxin could not be removed when it was incubated with the enzyme in the absence of Ca2+. In the latter case, cyclopiazonic acid was eliminated when the enzyme in the presence of toxin was incubated with Ca2+ at 37 degrees C. Under turnover conditions and in the presence of 10 microM ATP, the toxin-enzyme interaction can be characterized by an apparent Kd of 7 nM. With an ATP concentration of 1 mM, the enzyme was inhibited completely at a toxin/enzyme molar ratio of approximately 10. Furthermore, enzyme activity was observed to recover at a toxin/enzyme molar ratio of 1 when the Ca2+ concentration was raised, which is consistent with the competitive character of cyclopiazonic acid and Ca2+. It is concluded that ATP and Ca2+ can protect against cyclopiazonic acid inhibition.
The extracellular levels of the neurotransmitter glycine in the brain are tightly regulated by the glycine transporter 1 (GlyT1) and the clearance rate for glycine depends on its rate of transport and the levels of cell surface GlyT1. Over the years, it has been shown that PKC tightly regulates the activity of several neurotransmitter transporters. In the present work, by stably expressing three N-terminus GlyT1 isoforms in porcine aortic endothelial cells and assaying for [32P]-orthophosphate metabolic labeling, we demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. In addition, a 23-40% -inhibition on Vmax was obtained by incubation with phorbol ester without a significant change on the apparent Km value. Furthermore, pre-incubation of the cells with the selective PKCα/β inhibitor Gö6976 abolished the downregulation effect of phorbol ester on uptake and phosphorylation, whereas the selective PKCβ inhibitors (PKCβ inhibitor or LY333531) prevented the phosphorylation without affecting glycine uptake, defining a specific role of classical PKC on GlyT1 uptake and phosphorylation. Taken together, these data suggest that phosphorylation that conventional PKCα/β regulates the uptake of glycine, whereas PKCβ is responsible for GlyT1 phosphorylation.
Chronic wounds are a major health problem that cause millions of dollars in expenses every year. Among all the treatments used, active wound treatments such as enzymatic treatments represent a cheaper and specific option with a fast growth category in the market. In particular, bacterial and plant proteases have been employed due to their homology to human proteases, which drive the normal wound healing process. However, the use of these proteases has demonstrated results with low reproducibility. Therefore, alternative sources of proteases such as snake venom have been proposed. Here, we performed a functional mining of proteases from rattlesnakes (Crotalus ornatus, C. molossus nigrescens, C. scutulatus, and C. atrox) due to their high protease predominance and similarity to native proteases. To characterize Crotalus spp. Proteases, we performed different protease assays to measure and confirm the presence of metalloproteases and serine proteases, such as the universal protease assay and zymography, using several substrates such as gelatin, casein, hemoglobin, L-TAME, fibrinogen, and fibrin. We found that all our venom extracts degraded casein, gelatin, L-TAME, fibrinogen, and fibrin, but not hemoglobin. Crotalus ornatus and C. m. nigrescens extracts were the most proteolytic venoms among the samples. Particularly, C. ornatus predominantly possessed low molecular weight proteases (P-I metalloproteases). Our results demonstrated the presence of metalloproteases capable of degrading gelatin (a collagen derivative) and fibrin clots, whereas serine proteases were capable of degrading fibrinogen-generating fibrin clots, mimicking thrombin activity. Moreover, we demonstrated that Crotalus spp. are a valuable source of proteases that can aid chronic wound-healing treatments.
BackgroundGlobally, snake envenomation is a well-known cause of death and morbidity. In many cases of snakebite, myonecrosis, dermonecrosis, hemorrhage and neurotoxicity are present. Some of these symptoms may be provoked by the envenomation itself, but others are secondary effects of the produced oxidative stress that enhances the damage produced by the venom toxins. The only oxidative stress effect known in blood is the change in oxidation number of Fe (from ferrous to ferric) in hemoglobin, generating methemoglobin but not in other macromolecules. Currently, the effects of the overproduction of methemoglobin derived from snake venom are not extensively recorded. Therefore, the present study aims to describe the oxidative stress induced by Crotalus molossus nigrescens venom using erythrocytes.MethodsHuman erythrocytes were washed and incubated with different Crotalus molossus nigrescens venom concentrations (0–640 μg/mL). After 24 h, the hemolytic activity was measured followed by attenuated total reflectance-Fourier transform infrared spectroscopy, non-denaturing PAGE, conjugated diene and thiobarbituric acid reactive substances determination.ResultsLow concentrations of venom (<10 μg/mL) generates oxyhemoglobin release by hemolysis, whereas higher concentrations produced a hemoglobin shift of valence, producing methemoglobin (>40 μg/mL). This substance is not degraded by proteases present in the venom. By infrared spectroscopy, starting in 80 μg/mL, we observed changes in bands that are associated with protein damage (1660 and 1540 cm−1) and lipid peroxidation (2960, 2920 and 1740 cm−1). Lipid peroxidation was confirmed by conjugated diene and thiobarbituric acid reactive substance determination, in which differences were observed between the control and erythrocytes treated with venom.Conclusions Crotalus molossus nigrescens venom provokes hemolysis and oxidative stress, which induces methemoglobin formation, loss of protein structure and lipid peroxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.