Modern electric drives use a self-commissioning procedure to precisely identify motor parameters for achieving high-performance control. Typically, the induction motor magnetizing curve is identified using no-load rotational test. However, some applications necessitate the electric drive to identify the magnetizing curve at standstill conditions. As one of the well-known standstill approaches, the traditional flux integration exhibits several practical problems. Any imperfection in measured current, estimated stator resistance, and dead-time compensation directly affects the accuracy of the estimated magnetizing curve because of error accumulation in open-loop integration. This paper proposes a robust yet simple solution against those practical concerns. It can identify the magnetizing curve without using any dead-time compensation and stator resistance. Only industry-standard dc-link voltage and phase current measurements are used. Its superior features are experimentally verified on a number of motors and the results are confirmed by no-load rotational test results. Its robustness against current offset and extra longer integration duration is also proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.