Life history trade-offs and stress tolerance in green hydra (Hydra viridissima Pallas 1766): the importance of nutritional status and perceived population density Abstract Clonally reproducing animals, such as freshwater hydra, can achieve very quick population growth, potentially resulting in high density when dispersal is limited. The reproductive value of any offspring produced clonally in such a high density population is low because of the strong competition for food. Therefore, animals experiencing such conditions should allocate their resources to self-maintenance, to increase survival chances. Increased allocation to self-maintenance in turn should enable animals to withstand higher levels of genotoxic stress. To test this prediction, we exposed green hydra (Hydra viridissima Pallas 1766) to a perceived high density (by keeping them in crowded culture medium) or low density (fresh culture medium) without altering food availability. We also manipulated nutritional status (by starving animals for different time periods) and previous exposure to mild stress in a full factorial experimental design. At the end of the experiment we exposed animals to a high concentration of hydrogen-peroxide and scored stress tolerance. We found that stress tolerance is greatly elevated in animals perceiving high density, confirming our prediction. Stress tolerance decreased in animals starved for a few days, suggesting that the ability to maintain an elevated stress tolerance function has nutritional costs and is possible only when resource availability is high. On the other hand, previous exposure to mild stress had a small effect on the ability to tolerate subsequent exposure to stress, and only in the low density treatment group. Thus, stress tolerance in hydra is dynamically modulated in response to social, environmental and nutritional cues.
Natural environments tend to be variable resulting in alternating periods of high and low food availability. Therefore, animals have to be able to accommodate to sudden environmental changes by adjusting their physiology and behaviour to new conditions. We investigated how simulated food variability affects life history traits (asexual reproduction and stress tolerance) and response to environmental change in laboratory experiments with green hydra (Hydra viridissima). We assigned hydra into four groups differing in feeding frequency (high or low) and food regularity (random or stable). After 21 days of accommodation, feeding frequency was changed (increased or decreased) in half of each group, the other half was kept as a control group. Hydra showed a delayed response to environmental change (increased or decreased feeding frequency). This delay in response was greater under an unpredictable feeding scheme. Animals on a random scheme had lower budding rates and lower stress tolerance. Follow-up experiments suggest that this might be due to receiving food on subsequent days, since we found that animals fed daily have lower budding rates than those fed on alternate days. We hypothesize that frequent feeding might cause high levels of oxidative/xenobiotic stress which could overwhelm the defence system of these animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.