The effects were investigated of basic fibroblast growth factor (bFGF), transforming growth factor-beta (TGF-beta) and nerve growth factor (NGF) on the release of progesterone and oxytocin from the bovine corpus luteum (CL) at different stages of the oestrous cycle. A microdialysis system (MDS) of CL and a cell culture system with a reduced number of endothelial cells were used. In the MDS of CL from the mid-luteal stage (days 8-12 of the oestrous cycle), infusion with bFGF (0.1, 1, 10 and 100 ng/ml), TGF-beta (0.1, 1 and 10 ng/ml) and NGF (0.1, 1, 10 and 100 ng/ml) for 30 min induced significant acute effects on the release of progesterone. Both bFGF and NGF stimulated the release of progesterone during peptide infusion, TGF-beta and also bFGF in the period thereafter. This stimulation was dose-dependent during and after the infusion only for bFGF. This response pattern was observed at all luteal stages for the three growth factors, but bFGF was more stimulatory at the early (days 5-7) and mid-luteal stages during and after peptide infusion. The release of oxytocin was stimulated by bFGF in a dose-dependent manner. At the highest dose, bFGF, TGF-beta and NGF stimulated the release of oxytocin throughout all three luteal stages. When luteal cells were cultured with growth factors, only TGF-beta showed a dose-dependent inhibition of both basal and LH-stimulated progesterone as well as oxytocin release (measured between 48 and 52 h of culture). NGF had an inhibitory effect only on the basal release of oxytocin. bFGF had no effect on the release of either hormone under continuous stimulation in cell culture. The results indicate that bFGF, TGF-beta and NGF act directly and acutely on the secretory function of bovine CL in the MDS but also have long-term effects as shown in cell culture. bFGF appears to be an important autocrine/paracrine regulator of CL function, since local expression of its mRNA, peptide synthesis and its mitogenic and non-mitogenic actions have now been confirmed. Endothelial cells from the CL have been identified as target cells for bFGF. Differences observed between the two systems might thus be attributed to the presence or absence of cell-to-cell contact and a reduced number of endothelial cells, as well as to the duration of peptide stimulation and medium changes every 24 h compared with the flow-through conditions in the MDS.
Summary. The degree of atresia of the follicle had no influence on the intrafollicular concentrations of \g=b\-carotene, vitamin E and cholesterol. This might result from the passive transfer of these substances from blood to follicular fluid bound to high density lipoproteins. However, concentrations of vitamin A in follicular fluid were significantly (P < 0\m=.\001) influenced by follicle quality, with highest concentrations (0\m=.\32 \ g = m \ g / m l ) in non-atretic follicles and lowest values (0\m=.\15 \g=m\g/ml) in greatly atretic follicles. The higher concentrations of vitamin A in healthy follicles might be due to a local conversion of \ g = b \ \ x = r e q -\ carotene into vitamin A in follicular structures. By influencing hormone and protein synthesis, vitamin A may have a potential for local modulation of follicular development and therefore be one of the factors controlling recruitment, selection and growth of the dominant follicle in cattle.
Measurement of total urinary proteins in individuals that tested positive by urinary dipstick is a typical method for assessing the presence of potentially serious renal disorders. In the absence of such overt proteinuria, however, measurement of specific urinary proteins may be useful in the diagnosis of nephropathies and may provide greater insight into the pathogenesis. The urine of 28 dogs (16 with renal disease and 12 healthy) was evaluated to determine whether specific low-molecular-weight proteins or the pattern of protein excretion could also be used as a marker of tubular dysfunction in dogs. Specific proteins were assessed by immunological methods, whereas protein profiles were determined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (MS). In particular, changes in the excretion of retinol-binding protein (RBP) and Tamm-Horsfall protein (THP) appear to be of clinical relevance in the diagnosis of canine kidney diseases. The pattern of urinary protein and peptides revealed specific changes in abundance in dogs with renal disease at molecular masses (kD) of 11.58, 12.41, 12.60, 14.58, 20.95 (RBP), 27.85, and 65.69 (albumin). In conclusion, comparable proteins as in humans might be used as urinary markers for proximal (RBP) and distal (THP) tubular dysfunction in dogs. Surface-enhanced laser desorption/ionization time-of-flight MS is a promising tool for the study of kidney physiology and pathophysiology and might aid in the discovery of new biomarkers of renal disease.
The reuptake of retinol (ROH) and retinol-binding protein (RBP) in the kidneys is mediated by the endocytic receptor megalin, suggesting an important role for this receptor in vitamin A (VA) metabolism. We examined the extent to which megalin deficiency may affect urinary ROH excretion, levels of ROH and RBP in plasma, as well as storage of VA in liver and kidney. For this purpose, mice with a kidney-specific megalin gene defect (megalin(lox/lox); apoE(Cre)) and control mice (megalin(lox/lox)) were fed either a basal diet containing 4500 retinol equivalents (RE)/kg diet or a diet without VA during experimental periods of 42 and 84 d. Urinary ROH excretion was observed only in megalin(lox/lox); apoE(Cre) mice (P < 0.0001, 2-way ANOVA) and not in the controls. Plasma ROH and RBP differed only by diet (P < 0.05), but not genotype (P = 0.615). A major effect of megalin deficiency, however, was evident in retinyl ester levels in the liver (P < 0.05), which were approximately 37% lower than those in megalin(lox/lox) controls (P < 0.05, Student's t test) during the 84-d period of dietary VA deprivation. Kidney levels of VA were not affected by the receptor gene defect. The findings demonstrate that urinary ROH excretion caused by megalin deficiency requires accelerated mobilization of hepatic VA stores to maintain normal plasma ROH levels, which suggests that megalin plays an essential role in systemic VA homeostasis.
-The contents of retinol and retinyl esters as well as retinol-binding protein (RBP) in the plasma, urine, liver and kidneys of dogs, raccoon dogs and silver foxes were investigated. In the plasma and urine of all three species, vitamin A was present as retinol and retinyl esters. Vitamin A levels (1 376 ± 669 µg·g -1 ) were significantly higher in the livers of dogs than in the kidneys (200 ± 217 µg·g -1 , P < 0.001). However, vitamin A levels in the kidneys of raccoon dogs (291 ± 146 µg·g -1 ) and silver foxes (474 ± 200 µg·g -1 ) were significantly higher than in the liver (67 ± 58 µg·g -1 and 4.3 ± 2.4 µg·g -1 , respectively, both P < 0.001). RBP was immunologically detected in the blood plasma of all species, but never in the urine. In the liver, immunoreactive RBP was found in hepatocytes. In the kidneys of all species, RBP was observed in the cells of the proximal convoluted tubules. The levels of vitamin A in the livers of raccoon dogs and silver foxes were extremely low, which would be interpreted as a sign of great deficiency in humans. This observation might indicate that the liver status cannot be used as an indicator of vitamin A deficiency in canines. The high levels of vitamin A in the kidneys in all three species may indicate a specific function of the kidney in the vitamin A metabolism of canines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.