The movement of water, matter, organisms, and energy can be altered substantially at ecohydrological interfaces, the dynamic transition zones that often develop within ecotones or boundaries between adjacent ecosystems. Interdisciplinary research over the last two decades has indicated that ecohydrological interfaces are often “hot spots” of ecological, biogeochemical, and hydrological processes and may provide refuge for biota during extreme events. Ecohydrological interfaces can have significant impact on global hydrological and biogeochemical cycles, biodiversity, pollutant removal, and ecosystem resilience to disturbance. The organizational principles (i.e., the drivers and controls) of spatially and temporally variable processes at ecohydrological interfaces are poorly understood and require the integrated analysis of hydrological, biogeochemical, and ecological processes. Our rudimentary understanding of the interactions between different drivers and controls critically limits our ability to predict complex system responses to change. In this paper, we explore similarities and contrasts in the functioning of diverse freshwater ecohydrological interfaces across spatial and temporal scales. We use this comparison to develop an integrated, interdisciplinary framework, including a roadmap for analyzing ecohydrological processes and their interactions in ecosystems. We argue that, in order to fully account for their nonlinear process dynamics, ecohydrological interfaces need to be conceptualized as unique, spatially and temporally dynamic entities, which represents a step change from their current representation as boundary conditions at investigated ecosystems.
International audienceWe evaluated nitrogen (N) removal efficiency by ri-parian buffers at 14 sites scattered throughout seven European countries subject to a wide range of climatic conditions. The sites also had a wide range of nitrate inputs, soil characteristics, and vegetation types. Dissolved forms of N in groundwater and associated hydrological parameters were measured at all sites; these data were used to calculate nitrate removal by the riparian buffers. Nitrate removal rates (expressed as the difference between the input and output nitrate concentration in relation to the width of the riparian zone) were mainly positive, ranging from 5% m 1 to 30% m 1 , except for a few sites where the values were close to zero. Average N removal rates were similar for herbaceous (4.43% m 1) and forested (4.21% m 1) sites. Nitrogen removal efficiency was not affected by climatic variation between sites, and no significant seasonal pattern was detected. When nitrate inputs were low, a very large range of nitrate removal efficiencies was found both in the forested and in the nonforested sites. However, sites receiving nitrate inputs above 5 mg N L 1 showed an exponential negative decay of nitrate removal efficiency (nitrate removal efficiency 33.6 e 0.11 NO 3 input , r 2 0.33, P 0.001). Hydraulic gradient was also negatively related to nitrate removal (r 0.27, P 0.05) at these sites. On the basis of this intersite comparison, we conclude that the removal of nitrate by biological mechanisms (for example, denitrification, plant uptake) in the riparian areas is related more closely to nitrate load and hydraulic gradient than to climatic parameters
[1] Storm events have major implications for biogeochemical cycles at local and regional scales and they provide an excellent opportunity to study the hydro-biogeochemical functioning of catchments. However, concentration-discharge (C-Q) responses have only been studied in detail for short periods or a few selected events. In consequence, it is difficult to quantify the diversity of C-Q responses in a hydrological system and impossible to assess whether the succession of forms of C-Q responses follows a predictable sequence or not. Bearing in mind these shortfalls, the variability of dissolved organic carbon (DOC) and nitrate (NO 3 ) pulses during storms is analyzed in a detailed 4-year series from an intermittent Mediterranean stream. In this study, each DOC and NO 3 -Q response is synthesized by two descriptors that summarize its trend (DC; dilution/ flushing/no change) and shape (DR; linear/nonlinear response). We observe that C-Q responses are widely distributed along the two-dimensional DR versus DC continuum. Furthermore, the temporal succession of forms of DOC and NO 3 -Q responses follow a random pattern, and only the dynamics of the DR (NO3) descriptor show periodicity. The long-term data set reveals that it is impossible to predict with reasonable precision the full properties of DOC and NO 3 -Q responses. Thus, a ''typical'' C-Q response does not really exist at our study site, and this apparent diversity of responses has to be handled with a probabilistic approach that allows synthesis of the complexity of the hydrobiogeochemical functioning of a specific catchment.Citation: Butturini, A., M. Alvarez, S. Bernal, E. Vazquez, and F. Sabater (2008), Diversity and temporal sequences of forms of DOC and NO 3 -discharge responses in an intermittent stream: Predictable or random succession?,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.