Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Inverse design arises in a variety of areas in engineering such as acoustic, mechanics, thermal/electronic transport, electromagnetism, and optics. Topology optimization is an important form of inverse design, where one optimizes a designed geometry to achieve targeted properties parameterized by the materials at every point in a design region. This optimization is challenging, because it has a very high dimensionality and is usually constrained by partial differential equations (PDEs) and additional inequalities. Here, we propose a new deep learning method---physics-informed neural networks with hard constraints (hPINNs)---for solving topology optimization. hPINN leverages the recent development of PINNs for solving PDEs, and thus does not require a large dataset (generated by numerical PDE solvers) for training. However, all the constraints in PINNs are soft constraints, and hence we impose hard constraints by using the penalty method and the augmented Lagrangian method. We demonstrate the effectiveness of hPINN for a holography problem in optics and a fluid problem of Stokes flow. We achieve the same objective as conventional PDE-constrained optimization methods based on adjoint methods and numerical PDE solvers, but find that the design obtained from hPINN is often smoother for problems whose solution is not unique. Moreover, the implementation of inverse design with hPINN can be easier than that of conventional methods because it exploits the extensive deep-learning software infrastructure.\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . inverse design, topology optimization, partial differential equations, physicsinformed neural networks, penalty method, augmented Lagrangian method \bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35R30, 65K10, 68T20 \bfD \bfO \bfI .
The aggregated unfitted finite element method (AgFEM) is a methodology recently introduced in order to address conditioning and stability problems associated with embedded, unfitted, or extended finite element methods. The method is based on removal of basis functions associated with badly cut cells by introducing carefully designed constraints, which results in well-posed systems of linear algebraic equations, while preserving the optimal approximation order of the underlying finite element spaces. The specific goal of this work is to present the implementation and performance of the method on distributed-memory platforms aiming at the efficient solution of large-scale problems. In particular, we show that, by considering AgFEM, the resulting systems of linear algebraic equations can be effectively solved using standard algebraic multigrid preconditioners. This is in contrast with previous works that consider highly customized preconditioners in order to allow one the usage of iterative solvers in combination with unfitted techniques. Another novelty with respect to the methods available in the literature is the problem sizes that can be handled with the proposed approach. While most of previous references discussing linear solvers for unfitted methods are based on serial non-scalable algorithms, we propose a parallel distributed-memory method able to efficiently solve problems at large scales. This is demonstrated by means of a weak scaling test defined on complex 3D domains up to 300M degrees of freedom and one billion cells on 16K CPU cores in the Marenostrum-IV platform. The parallel implementation of the AgFEM method is available in the large-scale finite element package FEMPAR.
Gridap is a new Finite Element (FE) framework, exclusively written in the Julia programming language, for the numerical simulation of a wide range of mathematical models governed by partial differential equations (PDEs). The library provides a feature-rich set of discretization techniques, including continuous and discontinuous FE methods with Lagrangian, Raviart-Thomas, or Nédélec interpolations, and supports a wide range of problem types including linear, nonlinear, single-field, and multi-field PDEs (see (Badia, Martín, & Principe, 2018, Section 3) for a detailed presentation of the mathematical abstractions behind the implementation of these FE methods). Gridap is designed to help application experts to easily simulate real-world problems, to help researchers improve productivity when developing new FE-related techniques, and also for its usage in numerical PDE courses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.