Pheochromocytomas, catecholamine-secreting tumors of neural crest origin, are frequently hereditary1. However, the molecular basis for the majority of these tumors is unknown2. We identified the transmembrane-encoding TMEM127 gene, on chromosome 2q11, as a novel pheochromocytoma susceptibility gene. In a cohort of 103 samples, truncating germline TMEM127 mutations were detected in one-third of familial and about 3% of sporadic-appearing tumors without a known genetic cause. The wild-type allele was consistently deleted in tumor DNA, suggesting a two-hit mechanism of inactivation. Pheochromocytomas with TMEM127 mutations are transcriptionally related to NF1-mutant tumors and, similarly, show hyperphosphorylation of mTOR targets. Accordingly, in vitro gain- and loss-of-function analyses indicate that TMEM127 is a negative regulator of mTOR. TMEM127 dynamically associates with the endomembrane system and colocalizes with perinuclear (activated) mTOR, suggesting a subcompartmental-specific effect. Our studies unveil TMEM127 as a novel tumor suppressor gene and validate the power of hereditary tumors for elucidating cancer pathogenesis.
The disease complex medullary cystic disease/familial juvenile hyperuricemic nephropathy (MCKD/FJHN) is characterized by alteration of urinary concentrating ability, frequent hyperuricemia, tubulo-interstitial fibrosis, cysts at the cortico-medullary junction and renal failure. MCKD/FJHN is caused by mutations of the gene encoding uromodulin, the most abundant protein in urine. Here, we describe new missense mutations in three families with MCKD/FJHN and demonstrate allelism with a glomerulocystic kidney disease (GCKD) variant, showing association of cyst dilatation and collapse of glomeruli with some clinical features similar to MCKD/FJHN as hyperuricemia and impairment of urine concentrating ability. Furthermore, we provide the first functional characterization of uromodulin mutations. The four newly identified mutants were characterized by immunofluorescence and FACS analysis on transfected cells. These experiments showed that all uromodulin mutations cause a delay in protein export to the plasma membrane due to a longer retention time in the endoplasmic reticulum. Immunohistochemistry on GCKD and MCKD/FJHN kidney biopsies revealed dense intracellular accumulation of uromodulin in tubular epithelia of the thick ascending limb of Henle's loop. Electron microscopy demonstrated accumulation of dense fibrillar material within the endoplasmic reticulum. Consistently, patient urines show a severe reduction of excreted uromodulin. The maturation impairment is consistent with the clinical findings and suggests a pathogenetic mechanism leading to these kidney diseases.
HEOCHROMOCYTOMAS AND paragangliomas are chromaffin cell tumors of neural crest origin that arise from the adrenal medulla or extra-adrenal sympathetic paraganglia, respectively, and are frequently catecholamine secreting. 1 These tumors are usually benign and can occur as a single entity or as part of various hereditary tumor syndromes. Genetically, pheochromocytomas and paragangliomas are heterogeneous , with at least one-third of cases resulting from germline but not somatic mutations in 1 of several independent genes: RET, VHL, NF1, and succinate dehydrogenase (SDH) subunit B, C, and D genes. 2-5 More recently, other candidate susceptibil-Author Affiliations are listed at the end of this article.
The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5′UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF–encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.