We used strong motion records from the 1976 Friuli earthquake (M 6.4) and 10 of the biggest aftershocks recorded by the National Accelerograph Network of the Electrical Power Company of Italy to estimate the quality factor Q of S waves in this region. The wide distance range of the recordings (10 < r < 190 km) permits us to analyze the spectral amplitude decay of the records using a nonparametric approach [e.g., Anderson and Quaas, 1988; Castro et al., 1990; Anderson, 1991]. We obtained attenuation functions for a set of 18 frequencies ranging between 0.4 and 25.0 Hz. The values of Q retrieved from the attenuation functions obtained follow the frequency‐dependent relation Q = 20.4f. A test of the method was made using a second data set consisting of digital seismograms from the Friuli‐Venezia Giulia Seismograph Network. In spite of the different size of the volume sampled by these data (10 < r < 131 km), the frequency dependence of Q obtained (Q = 16.1f0.92) is similar to that obtained with the strong motion data set. The near‐surface attenuation was also estimated using the model proposed by Anderson and Hough [1984] and Anderson [1991]. We found that κ0 is smaller for the strong motion stations located on rock compared to stations located on either shallow or soft sediments. To estimate the site response of the strong motion stations, we corrected the spectral records for the attenuation effect and then inverted the corrected records to separate source and site effects using the inversion scheme proposed by Andrews [1986]. To verify the site amplification estimates obtained, we also calculated the transfer function of each site using Nakamura's [1989] method for S wave [e.g., Lermo and Chavez‐García, 1993]. In general, the shapes of the site functions obtained with the inversion are consistent with the transfer functions obtained calculating the horizontal to vertical component ratio.
We present the results of a consistency check performed over a flatfile of accelerometric data extracted from the ITalian ACcelerometric Archive (ITACA), enriched with velocimetric records of events with magnitude M < 4.0. The flatfile, called ITACAext, includes 31,967 waveforms from 1709 shallow crustal earthquakes, in the magnitude range from 3.0 to 6.9, and occurred in the period of 1972–2019 in Italy. The consistency check is carried out by decomposing the residuals obtained from a reference ground motion model, for the ordinates of the 5% damped acceleration response spectra. The residual components are subsequently analyzed to identify a list of events, stations, and records that significantly deviate from the median trends predicted by the model. The results indicate that about 10% of events and stations are outliers, while only 1% of the waveforms present anomalous amplitudes. The asymmetrical azimuthal coverage of seismic stations around the epicenter is the most common issue that can affect the estimates of the repeatable event residual term. On the other hand, peculiarities in the site-response or wrong estimates of the soil parameters (i.e., the average shear-wave velocity in the first 30 m of the subsoil) are the main issues related to the repeatable station residuals. Finally, single records can show large residuals because of issues related to signal acquisition (e.g., multiple events, noisy records) or possible near-source effects (e.g., rupture directivity).
This research focuses on predicting and assessing earthquake impact due to future scenarios regarding the ground motion seismic hazard by accounting mainly for site effect in the Central Apennines. To this end, we produced synthetic broadband seismograms by adopting a hybrid simulation technique for the Mw6.0 Amatrice earthquake, Central Italy, on 24 August 2016, accounting for site conditions by means of amplification curves, computed with different approaches. Simulations were validated by comparing with data recorded at 57 strong-motion stations, the majority installed in urban areas. This station sample was selected among stations recording the Amatrice earthquake within an epicentral distance of 150 km and potentially prone to experience site amplification effects because of lying in particular site conditions (sedimentary basins, topographic irregularities, and fault zones). The evaluation of amplification curves best suited to describe local effects is of great importance because many towns and villages in central Italy are built in very different geomorphological conditions, from valleys and sedimentary basins to topographies. In order to well reproduce observed ground motions, we accounted for the site amplification effect by testing various generic and empirical amplification curves such as horizontal-to-vertical spectral ratios (calculated from Fourier spectra using both earthquake, HVSR, and ambient noise, HVNSR, recordings) and those derived from the generalized inversion technique (GIT). The site amplifications emanated from GIT improve the match between observed and simulated data, especially in the case of stations installed in sedimentary basins, where the empirical amplification curve effectively reproduces spectral peaks. On the contrary, the worst performances are for the spectral ratios between components, even compared to the generic site amplification, although the latter ignores the strong bedrock/soil seismic impedance contrasts. At sites on topography, we did not observe any systematic behavior, the use of empirical curves ameliorating the fit only in a small percentage of cases. These results may provide a valuable framework for developing ground motion models for earthquake seismic hazard assessment and risk mitigation, especially in urban areas located in the seismically active central Italy region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.