The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.
Slow-wave sleep (SWS) is important for memory consolidation. During sleep, neural patterns reflecting previously acquired information are replayed. One possible reason for this is that such replay exchanges information between hippocampus and neocortex, supporting consolidation. We recorded neuron ensembles in the rat medial prefrontal cortex (mPFC) to study memory trace reactivation during SWS following learning and execution of cross-modal strategy shifts. In general, reactivation of learning-related patterns occurred in distinct, highly synchronized transient bouts, mostly simultaneous with hippocampal sharp wave/ripple complexes (SPWRs), when hippocampal ensemble reactivation and cortico-hippocampal interaction is enhanced. During sleep following learning of a new rule, mPFC neural patterns that appeared during response selection replayed prominently, coincident with hippocampal SPWRs. This was learning dependent, as the patterns appeared only after rule acquisition. Therefore, learning, or the resulting reliable reward, influenced which patterns were most strongly encoded and successively reactivated in the hippocampal/prefrontal network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.