Monitoring specific features of the enterprises, for example, the adoption of e-commerce, is an important and basic task for several economic activities. This type of information is usually obtained by means of surveys, which are costly due to the amount of personnel involved in the task. An automatic detection of this information would allow consistent savings. This can actually be performed by relying on computer engineering, since in general this information is publicly available on-line through the corporate websites. This work describes how to convert the detection of e-commerce into a supervised classification problem, where each record is obtained from the automatic analysis of one corporate website, and the class is the presence or the absence of e-commerce facilities. The automatic generation of similar data records requires the use of several Text Mining phases; in particular we compare six strategies based on the selection of best words and best n-grams. After this, we classify the obtained dataset by means of four classification algorithms: Support Vector Machines; Random Forest; Statistical and Logical Analysis of Data; Logistic Classifier. This turns out to be a difficult case of classification problem. However, after a careful design and set-up of the whole procedure, the results on a practical case of Italian enterprises are encouraging.
PurposeThe main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’ websites. The information automatically extracted can be potentially updated with a frequency higher than once per year, and be safe from manipulations or misinterpretations. Moreover, this approach allows us flexibility in collecting indicators about the efficiency of universities’ websites and their effectiveness in disseminating key contents. These new indicators can complement traditional indicators of scientific research (e.g. number of articles and number of citations) and teaching (e.g. number of students and graduates) by introducing further dimensions to allow new insights for “profiling” the analyzed universities.Design/methodology/approachWebometrics relies on web mining methods and techniques to perform quantitative analyses of the web. This study implements an advanced application of the webometric approach, exploiting all the three categories of web mining: web content mining; web structure mining; web usage mining. The information to compute our indicators has been extracted from the universities’ websites by using web scraping and text mining techniques. The scraped information has been stored in a NoSQL DB according to a semi-structured form to allow for retrieving information efficiently by text mining techniques. This provides increased flexibility in the design of new indicators, opening the door to new types of analyses. Some data have also been collected by means of batch interrogations of search engines (Bing, www.bing.com) or from a leading provider of Web analytics (SimilarWeb, http://www.similarweb.com). The information extracted from the Web has been combined with the University structural information taken from the European Tertiary Education Register (https://eter.joanneum.at/#/home), a database collecting information on Higher Education Institutions (HEIs) at European level. All the above was used to perform a clusterization of 79 Italian universities based on structural and digital indicators.FindingsThe main findings of this study concern the evaluation of the potential in digitalization of universities, in particular by presenting techniques for the automatic extraction of information from the web to build indicators of quality and impact of universities’ websites. These indicators can complement traditional indicators and can be used to identify groups of universities with common features using clustering techniques working with the above indicators.Research limitationsThe results reported in this study refers to Italian universities only, but the approach could be extended to other university systems abroad.Practical implicationsThe approach proposed in this study and its illustration on Italian universities show the usefulness of recently introduced automatic data extraction and web scraping approaches and its practical relevance for characterizing and profiling the activities of universities on the basis of their websites. The approach could be applied to other university systems.Originality/valueThis work applies for the first time to university websites some recently introduced techniques for automatic knowledge extraction based on web scraping, optical character recognition and nontrivial text mining operations (Bruni & Bianchi, 2020).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.