The Timepix3, hybrid pixel detector (HPD) readout chip, a successor to the Timepix [1] chip, can record time-of-arrival (ToA) and time-over-threshold (ToT) simultaneously in each pixel. ToA information is recorded in a 14-bit register at 40 MHz and can be refined by a further 4 bits with a nominal resolution of 1.5625 ns (640 MHz). ToT is recorded in a 10-bit overflow controlled counter at 40 MHz. Pixels can be programmed to record 14 bits of integral ToT and 10 bits of event counting, both at 40 MHz. The chip is designed in 130 nm CMOS and contains 256 × 256 pixel channels (55 × 55 µm 2 ). The chip, which has more than 170 M transistors, has been conceived as a general-purpose readout chip for HPDs used in a wide range of applications. Common requirements of these applications are operation without a trigger signal, and sparse readout where only pixels containing event information are read out.A new architecture has been designed for sparse readout and can achieve a throughput of up to 40 Mhits/s/cm 2 . The flexible architecture offers readout schemes ranging from serial (one link) readout (40 Mbps) to faster parallel (up to 8 links) readout of 5.12 Gbps. In the ToA/ToT operation
region at a hadron collider. This document discusses the implications of these first measurements on classes of extensions to the Standard Model, bearing in mind the interplay with the results of searches for on-shell production of new particles at ATLAS and CMS. The physics potential of an upgrade to the LHCb detector, which would allow an order of magnitude more data to be collected, is emphasised.
In this paper, two digital column architectures suitable for sparse readout of data from a
pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of
256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the
Timepix3 chip, and this is presented together with initial measurements. Simulation results
and measured data are compared. The second architecture has been designed for Velopix,
a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to
radiation-induced single-event effects. Results from post-layout simulations are shown
with the circuit architectures.
We examine two digital architectures for front end pixel readout chips, Velopix and Timepix3. These readout chips are developed for tracking detectors in future high energy physics experiments. They must incorporate local intelligence in pixels for time-over-threshold measurement and sparse readout. In addition, Velopix must be immune to single-event upsets in its digital logic. The most important requirements for both chips are pixel size, timing resolution, low power and high-speed sparse readout. We describe the transaction level architectural models of the chips using SystemVerilog. The correctness of the models is ensured using Open Verification Methodology. We will also discuss the advantages gained from transaction level modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.