Approximately 5% of the world population is infected by the hepatitis B virus (HBV) that causes a necroinflammatory liver disease of variable duration and severity. Chronically infected patients with active liver disease carry a high risk of developing cirrhosis and hepatocellular carcinoma. The immune response to HBV-encoded antigens is responsible both for viral clearance and for disease pathogenesis during this infection. While the humoral antibody response to viral envelope antigens contributes to the clearance of circulating virus particles, the cellular immune response to the envelope, nucleocapsid, and polymerase antigens eliminates infected cells. The class I- and class II-restricted T cell responses to the virus are vigorous, polyclonal, and multispecific in acutely infected patients who successfully clear the virus, and the responses are relatively weak and more narrowly focused in chronically infected patients who do not. The pathogenetic and antiviral potential of the cytotoxic T lymphocyte (CTL) response to HBV has been demonstrated by the induction of a severe necroinflammatory liver disease following the adoptive transfer of HBsAg-specific CTL into HBV transgenic mice, and by the noncytolytic suppression of viral gene expression and replication in the same animals by a posttranscriptional mechanism mediated by interferon gamma, tumor necrosis factor alpha, and interleukin 2. The dominant cause of viral persistence during HBV infection is the development of a weak antiviral immune response to the viral antigens. While neonatal tolerance probably plays an important role in viral persistence in patients infected at birth, the basis for poor responsiveness in adult-onset infection is not well understood and requires further analysis. Viral evasion by epitope inactivation and T cell receptor antagonism may contribute to the worsening of viral persistence in the setting of an ineffective immune response, as can the incomplete downregulation of viral gene expression and the infection of immunologically privileged tissues. Chronic liver cell injury and the attendant inflammatory and regenerative responses create the mutagenic and mitogenic stimuli for the development of DNA damage that can cause hepatocellular carcinoma. Elucidation of the immunological and virological basis for HBV persistence may yield immunotherapeutic and antiviral strategies to terminate chronic HBV infection and reduce the risk of its life-threatening sequellae.
Hepatitis B virus (HBV) transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology. High-level viral gene expression was obtained in the liver and kidney tissues in three independent lineages. These animals were produced with a terminally redundant viral DNA construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely around the circular viral genome, and ends just downstream of the unique polyadenylation site in HBV. In these animals, the viral mRNA is more abundant in centrilobular hepatocytes than elsewhere in the hepatic lobule. High-level viral DNA replication occurs inside viral nucleocapsid particles that preferentially form in the cytoplasm of these centrilobular hepatocytes, suggesting that an expression threshold must be reached for nucleocapsid assembly and viral replication to occur. Despite the restricted distribution of the viral replication machinery in centrilobular cytoplasmic nucleocapsids, nucleocapsid particles are detectable in the vast majority of hepatocyte nuclei throughout the hepatic lobule. The intranuclear nucleocapsid particles are empty, however, suggesting that viral nucleocapsid particle assembly occurs independently in the nucleus and the cytoplasm of the hepatocyte and implying that cytoplasmic nucleocapsid particles do not transport the viral genome across the nuclear membrane into the nucleus during the viral life cycle. This model creates the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and to assess the antiviral potential of pharmacological agents and physiological processes, including the immune response.
It has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy or acting as an antagonist for the TCR. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.
Chronic hepatitis B virus (HBV) infection is a global public health challenge on the same scale as tuberculosis, HIV, and malaria. The International Coalition to Eliminate HBV (ICE-HBV) is a coalition of experts dedicated to accelerating the discovery of a cure for chronic hepatitis B. Following extensive consultation with more than 50 scientists from across the globe, as well as key stakeholders including people affected by HBV, we have identified gaps in our current knowledge and new strategies and tools that are required to achieve HBV cure. We believe that research must focus on the discovery of interventional strategies that will permanently reduce the number of productively infected cells or permanently silence the covalently closed circular DNA in those cells, and that will stimulate HBV-specific host immune responses which mimic spontaneous resolution of HBV infection. There is also a pressing need for the establishment of repositories of standardised HBV reagents and protocols that can be accessed by all HBV researchers throughout the world. The HBV cure research agenda outlined in this position paper will contribute markedly to the goal of eliminating HBV infection worldwide.
Overproduction of the hepatitis B virus (HBV) large envelope polypeptide by transgenic mice containing the entire HBV envelope coding region leads to the formation of extremely long (up to 800 nm), occasionally branching, filamen-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.