alpha(1,3)Fucosylated oligosaccharides represent components of leukocyte counterreceptors for E- and P-selectins and of L-selectin ligands expressed by lymph node high endothelial venules (HEV). The identity of the alpha(1,3)fucosyltransferase(s) required for their expression has been uncertain, as has a requirement for alpha(1,3)fucosylation in HEV L-selectin ligand activity. We demonstrate here that mice deficient in alpha(1,3) fucosyltransferase Fuc-TVII exhibit a leukocyte adhesion deficiency characterized by absent leukocyte E- and P-selectin ligand activity and deficient HEV L-selectin ligand activity. Selectin ligand deficiency is distinguished by blood leukocytosis, impaired leukocyte extravasation in inflammation, and faulty lymphocyte homing. These observations demonstrate an essential role for Fuc-TVII in E-, P-, and L-selectin ligand biosynthesis and imply that this locus can control leukocyte trafficking in health and disease.
Larotrectinib, a selective TRK tyrosine kinase inhibitor (TKI), has demonstrated histology-agnostic efficacy in patients with TRK fusion-positive cancers. While responses to TRK inhibition can be dramatic and durable, duration of response may eventually be limited by acquired resistance. LOXO-195 is a novel, selective TRK TKI designed to overcome acquired resistance mediated by recurrent kinase domain (solvent front and xDFG) mutations identified in multiple patients who have developed resistance to TRK TKIs. Activity against these acquired mutations was confirmed in enzyme and cell-based assays and in vivo tumor models. As clinical proof of concept, the first two patients with TRK fusion-positive cancers that developed acquired resistance mutations on larotrectinib were treated with LOXO-195 on a first-in-human basis, utilizing rapid dose titration guided by pharmacokinetic assessments. This approach led to rapid tumor responses and extended the overall duration of disease control achieved with TRK inhibition in both patients.
Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target’s resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.
The adhesion of platelets to the subendothelium of blood vessels at sites of vascular injury under high shear conditions is mediated by a direct interaction between the platelet receptor glycoprotein Ib␣ (GpIb␣) and the A1 domain of the von Willebrand factor (VWF). Here we report the 2.6-Å crystal structure of a complex comprised of the extracellular domain of GpIb␣ and the wild-type A1 domain of VWF. A direct comparison of this structure to a GpIb␣-A1 complex containing "gain-offunction" mutations, A1-R543Q and GpIb␣-M239V, reveals specific structural differences between these complexes at sites near the two GpIb␣-A1 binding interfaces. At the smaller interface, differences in interaction show that the ␣1-2 loop of A1 serves as a conformational switch, alternating between an open ␣1-2 isomer that allows faster dissociation of GpIb␣-A1, as observed in the wild-type complex, and an extended isomer that favors tight association as seen in the complex containing A1 with a type 2B von Willebrand Disease (VWD) mutation associated with spontaneous binding to GpIb␣. At the larger interface, differences in interaction associated with the GpIb␣-M239V platelet-type VWD mutation are minor and localized but feature discrete ␥-turn conformers at the loop end of the -hairpin structure. The -hairpin, stabilized by a strong classic ␥-turn as seen in the mutant complex, relates to the increased affinity of A1 binding, and the -hairpin with a weak inverse ␥-turn observed in the wild-type complex corresponds to the lower affinity state of GpIb␣. These findings provide important details that add to our understanding of how both type 2B and platelet-type VWD mutations affect GpIb␣-A1 binding affinity.
The ability to effectively target mutated KRAS has remained elusive despite decades of research. The recent identification of KRAS G12C inhibitors has provided an effective treatment option for patients harboring this particular mutation and has also provided insight toward targeting other KRAS mutants, including KRAS G12D . MRTX1133 was identified via a structure-based drug design (SBDD) strategy as a potent, selective, and non-covalent KRAS G12D inhibitor directed at the switch II binding pocket. MRTX1133 demonstrated a high-affinity interaction with KRAS G12D with KD or IC50 values each determined at ~0.2 pM or <2 nM using SPR direct binding or HTRF competition assays, respectively. MRTX1133 also demonstrated ~700-fold selectivity for KRAS G12D vs KRAS WT binding utilizing SPR. Interestingly, MRTX1133 demonstrated potent inhibition of active KRAS G12D using an HTRF effector interaction assay with a IC50 value of 9 nM. Insight toward the structural basis of binding of MRTX1133 to both the inactive GDP-bound and active GMPPCP-bound conformations of KRAS G12D is also provided by co-crystal structures. MRTX1133 demonstrated potent inhibition of ERK1/2 phosphorylation and cell viability in KRAS G12D -mutant cell lines with median IC50 values of ~5 nM. Consistent with binding affinity determination in cell-free systems, MRTX1133 demonstrated >1000-fold selectivity for inhibition of ERK1/2 phosphorylation in KRAS G12Dmutant cell lines compared with KRAS WT cell lines. Dose-dependent inhibition of KRASmediated signal transduction was also observed in multiple KRAS G12D -mutant tumor models in vivo. MRTX1133 demonstrated marked tumor regression (>30%) in a subset of KRAS G12Dmutant cell line-and patient-derived xenograft (PDX) models, including 8 out of 11 (73%) pancreatic ductal adenocarcinoma (PDAC) models evaluated. Pharmacological studies and CRISPR-based screens demonstrated co-targeting KRAS G12D in concert with putative feedback or bypass pathways including EGFR and PI3Kα led to enhanced anti-tumor activity relative to targeting each individual protein. Together, these data indicate the feasibility of utilizing SBDD approaches to selectively target alternative KRAS mutant variants with non-covalent, highaffinity small molecules targeting either the active or inactive state of KRAS. In addition, these data illustrate the therapeutic susceptibility and broad dependence of KRAS G12D mutationpositive tumors, including PDAC, on KRAS for tumor cell growth and survival. SignificanceThe development of clinically active KRAS G12C -selective inhibitors represents a milestone achievement for the treatment of cancer; however, the discovery of additional KRAS-mutant selective inhibitors has remained elusive. MRTX1133 is a potent KRAS G12D -selective small molecule inhibitor, is active in vitro and in vivo, induces regression in multiple xenograft tumor models and demonstrates increased anti-tumor activity in rationally designed combinations. These data confirm KRAS G12D functions as an oncogenic driver, including in pancreat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.