Sobolev orthogonal polynomials have been studied extensively in the past 20 years. The research in this field has sprawled into several directions and generates a plethora of publications. This paper contains a survey of the main developments up to now. The goal is to identify main ideas and developments in the field, which hopefully will lend a structure to the mountainous publications and help future research.
a b s t r a c tIn this paper we state and prove some properties of the zeros of exceptional Jacobi and Laguerre polynomials. Generically, the zeros of exceptional polynomials fall into two classes: the regular zeros, which lie in the interval of orthogonality and the exceptional zeros, which lie outside that interval. We show that the regular zeros have two interlacing properties: one is the natural interlacing between zeros of consecutive polynomials as a consequence of their Sturm-Liouville character, while the other one shows interlacing between the zeros of exceptional and classical polynomials. A Heine-Mehler type formula is provided for the exceptional polynomials, which allows to derive the asymptotic behaviour of their regular zeros for large degree n and fixed codimension m. We also describe the location and the asymptotic behaviour of the m exceptional zeros, which converge for large n to fixed values.
Given a matrix polynomial W(x), matrix bi-orthogonal polynomials with respect to the sesquilinear formwhere µ(x) is a matrix of Borel measures supported in some infinite subset of the real line, are considered. Connection formulas between the sequences of matrix bi-orthogonal polynomials with respect to •, • W and matrix polynomials orthogonal with respect to µ(x) are presented. In particular, for the case of nonsingular leading coefficients of the perturbation matrix polynomial W(x) we present a generalization of the Christoffel formula constructed in terms of the Jordan chains of W(x). For perturbations with a singular leading coefficient several examples by Durán et al are revisited. Finally, we extend these results to the non-Abelian 2D Toda lattice hierarchy. CONTENTS 1991 Mathematics Subject Classification. 42C05,15A23. Key words and phrases. Matrix orthogonal polynomials, Block Jacobi matrices, Darboux-Christoffel transformation, Block Cholesky decomposition, Block LU decomposition, quasi-determinants, non-Abelian Toda hierarchy. GA thanks financial support from the Universidad Complutense de Madrid Program "Ayudas para Becas y Contratos Complutenses Predoctorales en España 2011".MM & FM thanks financial support from the Spanish "Ministerio de Economía y Competitividad" research project MTM2012-36732-C03-01, Ortogonalidad y aproximación; teoría y aplicaciones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.