The influence of a simple semiempirical van der Waals ͑vdW͒ correction on the description of dispersive, covalent, and ionic bonds within density functional theory is studied. The correction is based on the asymptotic London form of dispersive forces and a damping function for each pair of atoms. It thus depends solely on the properties of the two atoms irrespective of their environment and is numerically very efficient. The correction is tested in comparison with results obtained using the generalized gradient approximation or the local density approximation for exchange and correlation. The results are also compared with reference values from experiment or quantum chemistry methods. In order to probe the universality and transferability of the semiempirical vdW correction, a range of solids and molecular systems with covalent, heteropolar, and vdW bonds are studied.
The adsorption of adenine on graphite is analyzed from first-principles calculations as a model case for the interaction between organic molecules and chemically inert surfaces. Within density-functional theory we find no chemical bonding due to ionic or covalent interactions, only a very weak attraction at distances beyond the equilibrium position due to the lowering of the kinetic energy of the valence electrons. Electron exchange and correlation effects are much more important for the stabilization of the adsystem. They are modeled by the local density or generalized gradient approximation supplemented by the London dispersion formula for the van der Waals interaction.
Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial chargetransfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.