Children and adults with Attention-Deficit Hyperactivity Disorder (ADHD) fail in simple tasks like telling whether two sounds have different durations, or in reproducing single durations. The deficit is linked to poor reading, attention, and language skills. Here we demonstrate that these timing distortions emerge also when tracking the beat of rhythmic sounds in perceptual and sensorimotor tasks. This contrasts with the common observation that durations are better perceived and produced when embedded in rhythmic stimuli. Children and adults with ADHD struggled when moving to the beat of rhythmic sounds, and when detecting deviations from the beat. Our findings point to failure in generating an internal beat in ADHD while listening to rhythmic sounds, a function typically associated with the basal ganglia. Rhythm-based interventions aimed at reinstating or compensating this malfunctioning circuitry may be particularly valuable in ADHD, as already shown for other neurodevelopmental disorders, such as dyslexia and Specific Language Impairment.
This study showed good to excellent suitability of an SG used on a tablet interface for rhythmic training in PD and the feasibility of this type of training in this population.
Developmental coordination disorder (DCD) is a common and well-recognized neurodevelopmental disorder affecting approximately 5 in every 100 individuals worldwide. It has long been included in standard national and international classifications of disorders (especially the Diagnostic and Statistical Manual of Mental Disorders ). Children and adults with DCD may come to medical or paramedical attention because of poor motor skills, poor motor coordination, and/or impaired procedural learning affecting activities of daily living. Studies show DCD persistence of 30–70% in adulthood for individuals who were diagnosed with DCD as children, with direct consequences in the academic realm and even beyond. In particular, individuals with DCD are at increased risk of impaired handwriting skills. Medium-term and long-term prognosis depends on the timing of the diagnosis, (possible) comorbid disorders (and their diagnosis), the variability of signs and symptoms (number and intensity), and the nature and frequency of the interventions individuals receive. We therefore chose to investigate the signs and symptoms, diagnosis, and rehabilitation of both DCD and developmental dysgraphia, which continues to receive far too little attention in its own right from researchers and clinicians.
Individuals with Parkinson’s disease (PD) experience rhythm disorders in a number of motor tasks, such as (i) oral diadochokinesis, (ii) finger tapping, and (iii) gait. These common motor deficits may be signs of “general dysrhythmia”, a central disorder spanning across effectors and tasks, and potentially sharing the same neural substrate. However, to date, little is known about the relationship between rhythm impairments across domains and effectors. To test this hypothesis, we assessed whether rhythmic disturbances in three different domains (i.e., orofacial, manual, and gait) can be related in PD. Moreover, we investigated whether rhythmic motor performance across these domains can be predicted by rhythm perception, a measure of central rhythmic processing not confounded with motor output. Twenty-two PD patients (mean age: 69.5 ± 5.44) participated in the study. They underwent neurological and neuropsychological assessments, and they performed three rhythmic motor tasks. For oral diadochokinesia, participants had to repeatedly produce a trisyllable pseudoword. For gait, they walked along a computerized walkway. For the manual task, patients had to repeatedly produce finger taps. The first two rhythmic motor tasks were unpaced, and the manual tapping task was performed both without a pacing stimulus and musically paced. Rhythm perception was also tested. We observed that rhythmic variability of motor performances (inter-syllable, inter-tap, and inter-stride time error) was related between the three functions. Moreover, rhythmic performance was predicted by rhythm perception abilities, as demonstrated with a logistic regression model. Hence, rhythm impairments in different motor domains are found to be related in PD and may be underpinned by a common impaired central rhythm mechanism, revealed by a deficit in rhythm perception. These results may provide a novel perspective on how interpret the effects of rhythm-based interventions in PD, within and across motor domains.
Rhythm disorders are consistently reported in Parkinson’s disease (PD). They manifest across motor domains, such as in orofacial (oral diadochokinesis), manual (finger tapping), and gait tasks. It is still unclear, however, whether these disorders are domain- and task-specific, or result from impaired common mechanisms supporting rhythm processing (general dysrhythmia). We tested the possibility that an at-home intervention delivered via a rhythmic video game on tablet improves motor performance across motor domains in PD. Patients with PD (n = 12) played at home a rhythmic video game (Rhythm Workers) on tablet, in which they finger-tapped to the beat of music, for 6 weeks. A control group (n = 11) played an active non-rhythmic video game (Tetris). A third group (n = 10) did not receive any intervention. We measured rhythmic abilities in orofacial, manual and gait motor domains, as well as rhythm perception, before and after the intervention. Patients who performed the rhythmic training improved their orofacial and manual rhythmic performance. This beneficial effect was linked to improved rhythm perception only following the rhythmic training period. We did not observe any improvement in rhythmic abilities in the other two groups. In this pilot study, we demonstrated that at-home intervention with a rhythmic video game using finger tapping can have beneficial effects on motor performance across different motor domains (manual and orofacial). This finding provides evidence of a general dysrhythmia in PD and paves the way to technology-driven interventions aiming at alleviating rhythm-related motor deficits in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.