The thermal environment experienced by birds during early postembryonic development may be an important factor shaping growth and survival. However, few studies have directly manipulated nest temperature (T n) during the nestling phase, and none have measured the consequences of experimental heat stress on nestlings’ body temperature (T b). It is therefore not known to what extent any fitness consequences of development in a thermally challenging environment arise as a direct, or indirect, effect of heat stress. We, therefore, studied how experimentally increased T n affected T b in 8–12 d old blue tit Cyanistes caeruleus nestlings, to investigate if increased thermoregulatory demands to maintain normothermic T b influenced nestling growth and apparent long‐term survival. Nestlings in heated nest‐boxes had significantly higher T b compared to unheated nestlings during most of the experimental period. Yet, despite facing T n 50°C (as measured in the bottom of the nest cup below the nestlings), the highest nestling T b recorded was 43.8°C with nestlings showing evidence of controlled facultative hyperthermia without any increased nestling mortality in heated nests. However, body mass gain was lower in these nestlings compared to nestlings from control nest‐boxes. Contrary to our prediction, a larger proportion of nestlings from heated nest‐boxes were recaptured during their first winter, or subsequently recruited into the breeding population as first‐ or second‐year breeders. This result should, however, be treated with caution because of low recapture rates. This study highlights the importance of the thermal environment during nestling development, and its role in shaping both growth patterns and possibly also apparent survival.
Altricial birds are unable to maintain body temperature when exposed to low ambient temperatures during the first days after hatching. Thermoregulatory capacity begins to form as postnatal development progresses, and eventually nestlings become homeothermic. Several factors may influence this development at both the level of the individual and the level of the whole brood, but to our knowledge no studies have focused on the effect of brood size per se on the development of endothermy in individual nestlings. We performed cooling experiments on blue tit (Cyanistes caeruleus) nestlings in the field, to study how different experimental brood sizes affected the development of endothermy in individual nestlings and the thermal environment experienced by the whole brood in the nest. Nestlings from all experimental brood sizes showed a decrease in cooling rate as they grew older, but birds from reduced broods showed an earlier onset of endothermy compared with nestlings from enlarged and control broods. This difference manifested during early development and gradually disappeared as nestlings grew older. The thermal environment in the nests differed between treatments during nestling development, such that nest temperature in reduced broods was lower than that in enlarged broods during all days and during nights at the end of the experimental period. We suggest that the development of endothermy in blue tit nestlings is not ontogenetically fixed, but instead may vary according to differences in developmental, nutritional and thermal conditions as determined by brood size.
Weather influences both the distribution and life-history strategies of birds. Temperature ranks amongst the more important weather parameters in this regard since warming springs in temperate and high latitudes and more frequent heatwaves globally have caused major changes in breeding phenology and negatively affected adult and juvenile survival, respectively. Both long-term and stochastic changes in temperature can have fundamental consequences for avian reproduction even when the effects are not lethal, such as via thermal constraints on parental provisioning and chick growth. To date, most of what we know about temperature effects on nestling development and parental effort during reproduction is based on correlative data. In addition, an increasing amount of evidence indicates that temperature change also significantly affects birds that breed in cooler temperate areas, which so far has been somewhat overlooked. Therefore, in this perspective piece, we outline the existing literature on temperature effects on nestling development and parental behavior, with an emphasis on what needs to be done to address the causal effects of temperature change on avian reproduction under climate change. We finish by providing an outlook over future avenues of research, and give suggestions of some specific areas that might be especially promising in developing this field of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.