Background: Personality plays a pivotal role in our understanding of human actions and behavior. Today, the applications of personality are widespread, built on the solutions from psychology to infer personality. Aim: In software engineering, for instance, one widely used solution to infer personality uses textual communication data. As studies on personality in software engineering continue to grow, it is imperative to understand the performance of these solutions. Method: This paper compares the inferential ability of three widely studied text-based personality tests against each other and the ground truth on GitHub. We explore the challenges and potential solutions to improve the inferential ability of personality tests. Results: Our study shows that solutions for inferring personality are far from being perfect. Software engineering communications data can infer individual developer personality with an average error rate of 41%. In the best case, the error rate can be reduced up to 36% by following our recommendations 1 . CCS CONCEPTS• Software and its engineering → Programming teams; • Humancentered computing → Natural language interfaces; • Social and professional topics → Cultural characteristics; • Computing methodologies → Simulation evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.