In order to explore the dynamic characteristics of the linear-arch beam tri-stable piezoelectric energy harvester (TPEH), a magnetic force model was established by the magnetic dipole method, and the linear-arch composite beam nonlinear restoring force model was obtained through experiments. Based on the Euler–Bernoulli beam theory, a system dynamic model is established, and the influence of the horizontal distance, vertical distance and excitation acceleration of magnets on the dynamic characteristics of the system is simulated and analyzed. Moreover, the correctness of the theoretical results is verified by experiments. The results show that the system can be mono-stable, bi-stable and tri-stable by adjusting the horizontal or vertical spacing of the magnets under proper excitation. The potential well of the system in the tri-stable state is shallow, and it is easier to achieve a large-amplitude response. Increasing the excitation level is beneficial for the large-amplitude response of the system. This study provides theoretical guidance for the design of linear-arch beam TPEH.
To improve the energy harvesting performance of an energy harvester, a novel bistable piezoelectric energy harvester with variable potential well (BPEH-V) is proposed by introducing a spring to the external magnet from a curve-shaped beam bistable harvester (CBH-C). First, finite element simulation was performed in COMSOL software to validate that the curved beam configuration was superior to the straight beam in power generation performance, which benefits energy harvesting. Moreover, the nonlinear magnetic model was obtained by using the magnetic dipoles method, and the nonlinear restoring force model of the curve-shaped beam was acquired based on fitting the experimental data. The corresponding coupled governing equations were derived by using generalized Hamilton’s principle, the dynamic responses were obtained by solving the coupling equations with the ode45 method. Finally, the numerical simulations showed that the proposed harvester can make interwell oscillations easier due to the spring being efficiently introduced to pull down the potential barrier compared with the conventional bistable harvester. Spring stiffness has a great impact on characteristics of the system, and a suitable stiffness contributes to realize large-amplitude interwell oscillations over a wide range of excitation, especially in the low excitation condition.
This paper proposes a parameter identification method for the multiparameter identification study of the linear–arch composite beam piezoelectric energy harvester. According to the voltage response characteristics of the system under short-circuit conditions, the mechanical equation is solved by transient excitation, combined with the backbone curve theory and logarithmic attenuation method, to obtain the system’s linear damping, linear stiffness, and nonlinear stiffness. According to the voltage response characteristics of the system under open-circuit conditions, combined with the electrical equations, the system electromechanical coupling coefficient and equivalent capacitance coefficient are obtained; numerical simulation results show that the identification parameters have good accuracy. Finally, an experimental platform was built for verification, and the results show that the method has high accuracy and practicability.
In this work, for the wind energy and vibration energy in practical environment, a novel zigzag-shaped energy harvester is proposed to harvest them simultaneously. This harvester is constituted of an inclined beam and a horizontal beam with a bluff body fixed at the free end. The inclined beam is covered by a piezoelectric patch. The vibration induced by wind flow and base excitation could produce electric energy through the piezoelectric material and realize energy harvesting. Especially, the softening characteristic created by magnetic interaction can extend the working bandwidth. The dynamical coupling equations are derived, and corresponding simulations are carried out, the results show that the cubic bluff body can help increase the wind-induced energy harvesting. The responses obtained under the base excitation combined with wind flow demonstrate that the hybrid excitation can provide a significant enhancement to the non-resonance region. The related validation experiments are carried out. The experimental results have a good agreement with the numerical results. Compared with the conventional base excitation or wind flow excitation, the output power obtained under hybrid excitation increases 106% and 206% respectively.
Bistable piezoelectric energy harvester (BPEH) can remove mechanical energy waste, which is expected to realize the self-power supply of wireless sensors. To further improve the energy harvesting efficiency, we designed an improved bistable piezoelectric energy harvester (IBPEH). The restoring force model of the composing beam is acquired based on fitting experimental data, and the nonlinear magnetic model is obtained by using the magnetic dipole method. The electromechanical coupling dynamics model of the system is established based on Newton’s second law and Kirchhoff’s law. Based on the control variable method, the influences of excitation frequency and excitation amplitude on the vibration characteristics of IBPEH and BPEH are compared in simulation analysis. Moreover, the correctness of the theoretical analyses is verified by experiments. The results show that variations in the number of magnets and appropriate adjustments in their positions can broaden the operating frequency bandwidth of the bistable piezoelectric energy harvester, and realize large-amplitude periodic motion at lower excitation amplitudes. IBPEH can yield a higher voltage than BPEH under the same excitation conditions. This paper provides a theoretical basis for optimizing the potential well and further improving the electric energy harvest efficiency of the bistable piezoelectric energy harvester device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.