Deep neural networks have a clear degradation when applying to the unseen environment due to the covariate shift. Conventional approaches like domain adaptation requires the pre-collected target data for iterative training, which is impractical in real-world applications. In this paper, we propose to adapt the deep models to the novel environment during inference. An previous solution is test time normalization, which substitutes the source statistics in BN layers with the target batch statistics. However, we show that test time normalization may potentially deteriorate the discriminative structures due to the mismatch between target batch statistics and source parameters. To this end, we present a general formulation α-BN to calibrate the batch statistics by mixing up the source and target statistics for both alleviating the domain shift and preserving the discriminative structures. Based on α-BN, we further present a novel loss function to form a unified test time adaptation framework Core, which performs the pairwise class correlation online optimization. Extensive experiments show that our approaches achieve the state-of-the-art performance on total twelve datasets from three topics, including model robustness to corruptions, domain generalization on image classification and semantic segmentation. Particularly, our α-BN improves 28.4% to 43.9% on GTA5 → Cityscapes without any training, even outperforms the latest source-free domain adaptation method.
Domain adaptive semantic segmentation is recognized as a promising technique to alleviate the domain shift between the labeled source domain and the unlabeled target domain in many real-world applications, such as automatic pilot. However, large amounts of source domain data often introduce significant costs in storage and training, and sometimes the source data is inaccessible due to privacy policies. To address these problems, we investigate domain adaptive semantic segmentation without source data, which assumes that the model is pre-trained on the source domain, and then adapting to the target domain without accessing source data anymore. Since there is no supervision from the source domain data, many self-training methods tend to fall into the "winner-takesall" dilemma, where the majority classes totally dominate the segmentation networks and the networks fail to classify the minority classes. Consequently, we propose an effective framework for this challenging problem with two components: positive learning and negative learning. In positive learning, we select the class-balanced pseudo-labeled pixels with intra-class threshold, while in negative learning, for each pixel, we investigate which category the pixel does not belong to with the proposed heuristic complementary label selection. Notably, our framework can be easily implemented and incorporated with other methods to further enhance the performance. Extensive experiments on two widely-used synthetic-to-real benchmarks demonstrate our claims and the effectiveness of our framework, which outperforms the baseline with a large margin. Code is available at https://github.com/fumyou13/LDBE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.