Metasurfaces offered great opportunities to control electromagnetic (EM) waves, but currently available meta-devices typically work either in pure reflection or pure transmission mode, leaving half of EM space completely unexplored. Here, we propose a new type of metasurface, composed by specifically designed meta-atoms with polarization-dependent transmission and reflection properties, to efficiently manipulate EM waves in the full space. As a proof of concept, three microwave meta-devices are designed, fabricated and experimentally characterized. The first two can bend or focus EM waves at different sides (i.e., transmission/reflection sides) of the metasurfaces depending on the incident polarization, while the third one changes from a wave bender for reflected wave to a focusing lens for transmitted wave as the excitation polarization is rotated, with all these functionalities exhibiting very high efficiencies (in the range of 85%-91%) and total thickness ~/8 . Our findings significantly expand the capabilities of metasurfaces in controlling EM waves, and can stimulate high-performance multi-functional meta-devices facing more challenging and diversified application demands.
Spin‐controlled vortex generation and spin‐Hall effect, two distinct effects discovered in optics, have been extensively studied recently. However, while physical origins of two effects are both due to spin‐orbit interactions, their inherent connections remain obscure which also hinders further explorations on the manipulations of them. Here, in studying the scattering of a spin‐polarized light beam at sharp interfaces, an intriguing phase transition between vortex generation and spin‐Hall shift trigged by varying the incidence angle is revealed. After reflection/refraction, the beam contains two components: normal and abnormal modes acquiring spin‐redirection‐Berry phases and Pancharatnam–Berry phases, respectively. Inside the abnormal beam, two classes of wave components gain Pancharatnam–Berry phases with distinct topological natures, generating intrinsic and extrinsic orbital angular momenta (OAM), respectively. Enlarging incidence angle changes the relative portions of these two contributions, making the abnormal beam undergo a phase transition from vortex generation to spin‐Hall shift. Such intriguing effect is experimentally observed at a purposely designed metamaterial slab, exhibiting efficiency enhanced by several‐thousand times compared to that at a conventional slab. These findings unify two previously discovered effects in a single framework, reinterpret previous results with clearer pictures, and shed light on understanding other physical effects involving the competition between intrinsic and extrinsic OAM.
It has been known that an optical vortex with a topological charge ±2 can be generated as a circularly polarized (CP) light beam propagates in a bulk uniaxial crystal, but its physical origin remains obscure which also hinders its practical applications. Here, through a rigorous full-wave analyses on the problem, we show that, as a CP beam possessing a particular spin (handedness) propagates inside a uniaxial crystal, two beams with opposite spins can be generated caused by the unique spin-sensitive light-matter interactions in the anisotropic medium. Flipping the spin can offer the light beam an vortex phase with a topological charge of ±2 owing to the Pancharatnam-Berry mechanism, with efficiency dictated by the material properties of the uniaxial medium and the topological structure of the beam itself. With its physical origin fully uncovered, we finally discuss how to improve the efficiency of such effect, and compare the mechanisms of vortex generations in different systems. Our findings not only provide deeper understandings on such an intriguing effect, but also shed light on other spin-orbit-interaction-induced effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.