The reaction of a ditopic diiminopyridine ligand 2,6-bis (1-(2,6-diisopropyl-4-(pyridin-3-yl)phenylimino)ethyl)pyridine (L) with group 12 metal salts in various solvent systems afforded 12 metal-organic coordination complexes, including zero-dimensional (0D) metallomacrocycle, one-dimensional (1D) chain, and two-dimensional (2D) network structures:In these complexes, the semirigid ligand L exhibits four kinds of coordination modes [(syn, syn, syn), (syn, syn, anti), (anti, anti, syn), (anti, anti, anti)], leading to the formation of various supramolecular structures. Complex 1a is a tetranuclear metallomacrocycle. 1b contains 1D zigzag chains propagating along two different directions, which further pack into a noninterpenetrated three-dimensional (3D) framework by hydrogen-bonding interactions. Complexes 1c, 2, 3, 9, and 10 exhibit a 1D helical chain structure, while 4, 5, 6, and 7 are 1D looped-chain coordination polymers. Complex 8 displays an unprecedented pentanuclear Hg(II)-based 2D network with both HgCl 2 and Hg 2 Cl 2 bridges. It is noteworthy that 1a and 1b are supramolecular isomers formed in different solvent systems. The effects of the solvent, metal center, and anion on the different conformations adopted by the ligand and the structure of the products have been discussed. Additionally, the luminescent properties of the complexes have been investigated in the solid state, which display increased ligand-based fluorescence emission at room temperature.