Infrared, visible, and multispectral photodetectors are important components for sensing, security and electronics applications. Current fabrication of these devices is based on inorganic materials grown by epitaxial techniques which are not compatible with low‐cost large‐scale processing. Here, air‐stable multispectral solution‐processed inorganic double heterostructure photodetectors, using PbS quantum dots (QDs) as the photoactive layer, colloidal ZnO nanoparticles as the electron transport/hole blocking layer (ETL/HBL), and solution‐derived NiO as the hole transport/electron blocking layer (HTL/EBL) are reported. The resulting device has low dark current density of 20 nA cm‐2 with a noise equivalent power (NEP) on the order of tens of picowatts across the detection spectra and a specific detectivity (D*) value of 1.2 × 1012 cm Hz1/2 W‐1. These parameters are comparable to commercially available Si, Ge, and InGaAs photodetectors. The devices have a linear dynamic range (LDR) over 65 dB and a bandwidth over 35 kHz, which are sufficient for imaging applications. Finally, these solution‐processed inorganic devices have a long storage lifetime in air, even without encapsulation.
Abstract-Self-consistent quantum simulations are used to explore the high-frequency performance potential of carbon nantube field-effect transistors (CNTFETs). The cutoff frequency expected for a recently reported CNT Schottky-barrier FET is well below the performance limit, due to the large parasitic capacitance between electrodes. We show that using an array of parallel nanotubes as the transistor channel reduces parasitic capacitance per tube. Increasing tube density gives a large improvement of high-frequency performance when tubes are widely spaced and parasitic capacitance dominates but only a small improvement when the tube spacing is small and intrinsic gate capacitance dominates. Alternatively, using quasi-one-dimensional nanowires as source and drain contacts should significantly reduce parasitic capacitance and improve high-frequency performance. Ballistic CNTFETs should outperform ballistic Si MOSFETs in terms of the high-frequency performance limit because of their larger band-structure-limited velocity.Index Terms-Carbon nanotubes (CNTs), field-effect transistors (FETs), radio frequency (RF).
Senescent-cell antigen is a "neo-antigen" that appears on the surface of senescent cells and initiates IgG binding and cellular removal. As an approach to evaluating oxidation as a possible mechanism for generation of senescentcell antigen, we studied erythrocytes from vitamin E-deficient rats. Vitamin E is localized primarily in cellular membranes. Its major role is the termination of free-radical chain reactions propagated by the polyunsaturated fatty acids of membrane phospholipids. Results of our studies indicate that erythrocytes of all ages from vitamin E-deficient rats behave like old erythrocytes from normal rats, as determined by their susceptibility to phagocytosis, IgG binding, anion transport ability, and glyceraldehyde-3-phosphate dehydrogenase activity. Increased breakdown products of band 3 were observed with immunoblotting in membranes of erythrocytes from vitamin E-deficient rats. Breakdown products of band 3 are known to increase as cells age in normal individuals. The data suggest that oxidation may be a possible mechanism for erythrocyte aging and generation of senescent-cell antigen in vivo.
This paper reports an experimental and theoretical analysis of the diffusivity of electrons in Si as function of temperature, field strength, and field direction. Results for the longitudinal diffusion coefficient have been obtained experimentally for fields applied along (111) and (100) directions with time-of-flight and noise measurements. Calculations have been performed with the Monte Carlo procedure. The theoretical analysis, which includes an extensive discussion of the intervalley diffusion process, has yielded a revised version of the silicon model which correctly interprets both the new diffusion data and other well-established electron transport properties. The revision of th~ model is mainly concerned with the relative weights of/ and g intervalley scattering mechanisms. In fact the interpretation of the anisotropy of the diffusion allows separate estimates of the two types of scattering through their different effects on the intervalley diffusion which comes about when electrons have different drift velocities in different valleys.
Abstract-The current-voltage and noise characteristics of bridging silicon wires have been measured at room temperature. From the linear current-voltage characteristics the bulk and contact resistance contributions are extracted and modeled. The excess noise observed at low frequencies is interpreted in terms of bulk and contact noise contributions, with the former comparable, in terms of Hooge parameter values, to the low noise levels observed in high-quality silicon devices. The contact noise is significant in some devices and is attributed to the impinging end of the bridging nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.