Canine degenerative myelopathy (DM) is a fatal neurodegenerative disease prevalent in several dog breeds. Typically, the initial progressive upper motor neuron spastic and general proprioceptive ataxia in the pelvic limbs occurs at 8 years of age or older. If euthanasia is delayed, the clinical signs will ascend, causing flaccid tetraparesis and other lower motor neuron signs. DNA samples from 38 DM-affected Pembroke Welsh corgi cases and 17 related clinically normal controls were used for genome-wide association mapping, which produced the strongest associations with markers on CFA31 in a region containing the canine SOD1 gene. SOD1 was considered a regional candidate gene because mutations in human SOD1 can cause amyotrophic lateral sclerosis (ALS), an adult-onset fatal paralytic neurodegenerative disease with both upper and lower motor neuron involvement. The resequencing of SOD1 in normal and affected dogs revealed a G to A transition, resulting in an E40K missense mutation. Homozygosity for the A allele was associated with DM in 5 dog breeds: Pembroke Welsh corgi, Boxer, Rhodesian ridgeback, German Shepherd dog, and Chesapeake Bay retriever. Microscopic examination of spinal cords from affected dogs revealed myelin and axon loss affecting the lateral white matter and neuronal cytoplasmic inclusions that bind anti-superoxide dismutase 1 antibodies. These inclusions are similar to those seen in spinal cord sections from ALS patients with SOD1 mutations. Our findings identify canine DM to be the first recognized spontaneously occurring animal model for ALS.
During physical exercise, increases in motor neuron activity stimulate the expression of muscle-specific genes through the myocyte enhancer factor 2 (MEF2) family of transcription factors. Elevations in intracellular calcium increase MEF2 activity via the phosphorylation-dependent inactivation of class II histone deacetylases (HDACs). In studies to determine the role of the cAMP responsive element binding protein (CREB) in skeletal muscle, we found that mice expressing a dominant-negative CREB transgene (M-ACREB mice) exhibited a dystrophic phenotype along with reduced MEF2 activity. Class II HDAC phosphorylation was decreased in M-ACREB myofibers due to a reduction in amounts of Snf1lk (encoding salt inducible kinase, SIK1), a CREB target gene that functions as a class II HDAC kinase. Inhibiting class II HDAC activity either by viral expression of Snf1lk or by the administration of a small molecule antagonist improved the dystrophic phenotype in M-ACREB mice, pointing to an important role for the SIK1-HDAC pathway in regulating muscle function.
Bcl-2-associated athanogene 3 (BAG3) is a member of a conserved family of cyto-protective proteins that bind to and regulate Hsp70 family molecular chaperones. Here, we show that BAG3 is prominently expressed in striated muscle and colocalizes with Zdisks. Mice with homozygous disruption of the bag3 gene developed normally but deteriorated postnatally with stunted growth evident by 1 to 2 weeks of age and death by 4 weeks. BAG3-deficient animals developed a fulminant myopathy characterized by noninflammatory myofibrillar degeneration with apoptotic features. Knockdown of bag3 expression in cultured C2C12 myoblasts increased apoptosis on induction of differentiation, suggesting a need for bag3 for maintenance of myotube survival and confirming a cell autonomous role for bag3 in muscle. We conclude that although BAG3 is not required for muscle development, this co-chaperone appears to be critically important for maintenance of mature skeletal muscle.
Cypher is a member of a recently emerging family of proteins containing a PDZ domain at their NH2 terminus and one or three LIM domains at their COOH terminus. Cypher knockout mice display a severe form of congenital myopathy and die postnatally from functional failure in multiple striated muscles. Examination of striated muscle from the mutants revealed that Cypher is not required for sarcomerogenesis or Z-line assembly, but rather is required for maintenance of the Z-line during muscle function. In vitro studies demonstrated that individual domains within Cypher localize independently to the Z-line via interactions with α-actinin or other Z-line components. These results suggest that Cypher functions as a linker-strut to maintain cytoskeletal structure during contraction.
A retrospective study was performed on 200 randomly selected cases of inflammatory myopathy in dogs from diagnostic muscle biopsies received at the Comparative Neuromuscular Laboratory, University of California, San Diego. The most common clinical signs in dogs diagnosed with an inflammatory myopathy were generalized weakness, stilted gait, dysphagia, masticatory or generalized muscle atrophy, inability to open the jaw, megaesophagus, and dysphonia. Myalgia was rarely described. Age of onset ranged from 0.25 to 14 years. Genders were equally represented. Breed distribution approximated the 2002 American Kennel Club registration statistics (r .85) with the notable exception of Boxers and Newfoundlands. From the results of muscle biopsies, clinical signs, and presence or absence of antibodies against type 2M fibers, dogs were classified as a generalized inflammatory myopathy (gIM)-including immune-mediated polymyositis; infectious and preneoplastic myositis; and, rarely, dermatomyositislike or overlap syndromes or unclassified myositis-or a focal inflammatory myopathy (fIM)-including masticatory muscle and ex-traocular myositis. Average creatine kinase (CK) and aspartate aminotransferase (AST) concentrations in gIMs were significantly higher than those with fIMs (P .05). Neoplasia developed in 12 of 200 dogs within 12 months of diagnosis of polymyositis, with lymphoma diagnosed in 6 of 32 Boxers. Inflammatory myopathy was associated with antibody titers against infectious diseases in 38 dogs. Neospora caninum and Hepatozoon americanum cysts were found in tissues of 2 dogs not serologically tested. Antibodies against an unidentified sarcolemmal antigen were found in 9 of 19 Newfoundlands with polymyositis. The spectrum of canine inflammatory myopathies can be broad, with infectious etiologies relatively common, and can include preneoplastic and uncharacterized syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.