Ni–Co–P/Si3N4 composite coatings were fabricated over an aluminum–silicon (Al–Si) substrate using a pulse-current electroplating process, in which the rapid deposition of an intermediate nickel–cobalt layer was used to improve coating adhesion. The microstructure, mechanical, and tribological behaviors of the electroplated Ni–Co–P/Si3N4 composite coating were characterized and evaluated. The results revealed that the electroplated Ni–Co–P/Si3N4 composite coating primarily consisted of highly crystalline Ni–Co sosoloid and P, and a volumetric concentration of 7.65% Si3N4. The electroplated Ni–Co–P/Si3N4 composite coating exhibited hardness values almost two times higher than the uncoated Al–Si substrate, which was comparable to hard chrome coatings. Under lubricated and dry sliding conditions, the electroplated Ni–Co–P/Si3N4 composite coating showed excellent anti-wear performance. Whether dry or lubricated with PAO and engine oil, the composite coating showed minimum abrasive wear compared to the severe adhesive wear and abrasive wear observed in the Al–Si substrate.
A composite coating was prepared on an AZ91D magnesium alloy; first, a chromium-free potassium permanganate conversion substrate was deposited and then the substrate was further coated with epoxy resins. The surface morphology, chemical composition and deposited products of the conversion coating were investigated with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the conversion coating mainly consists of MnO2 and Al2O3 oxides, whose Pilling-Bedworth ratios (PBR) are larger than 1, indicating that the conversion coating is dense. Electrochemical-impedance-spectroscopy (EIS) plots reveal that the conversion coating shows a strong resistance to the flow of ions and electrons, demonstrating that the corrosion resistance of the AZ91D magnesium alloy is considerably enhanced. Neutral salt spray tests show that the corrosion resistance of the AZ91D magnesium alloy is substantially improved due to a composite coating consisting of a conversion deposit and an organic coating.
The Zn-40Al composites with various contents of SiC were fabricated by the semi-solid stir casting process. The influence of the SiC on the microstructure, mechanical properties and wear behavior of the composites were investigated. Microstructure analysis shows that the microstructures of as-cast Zn-Al alloys are refined by the addition of SiC. However, with the increase of SiC content, a number of shrinkage porosity occur. The hardness of the composites increases with the increase content of SiC. The tensile strength of the composites declines significantly with the increase content of SiC. The most effective strengthening achieves in Zn-40Al/0.5wt.% SiC, with a maximum increment of 20% in tensile strength compared to non-SiC addition alloy. The overall results reveal that the composites possess similar friction coefficients but the abrasion loss is reduced to less than a tenth after adding 0.5% SiC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.