It is interesting to measure the antiproton galactic component in cosmic rays in order to study the mechanisms by which particles and antiparticles are generated and propagate in the Galaxy and to search for new sources of, e.g., annihilation or decay of dark matter hypothetical particles. The antiproton spectrum and the ratio of the fluxes of primary cosmic ray antiprotons to protons with energies of 60 MeV to 350 GeV found from the data obtained from June 2006 to January 2010 in the PAMELA experiment are presented. The usage of the advanced data processing method based on the data classification mathematical model made it possible to increase statistics and analyze the region of higher energies than in the earlier works
We suggest an explanation of a sharp increase in the abundance of cosmogenic radiocarbon found in tree rings dated AD 775. The increase could originate from high-energy irradiation of the atmosphere by a galactic gamma-ray burst. We argue that, unlike a cosmic ray event, a gamma-ray burst does not necessarily result in a substantial increase in long-lived 10 Be atmospheric production. At the same time, the 36 Cl nuclide would be generated in the amounts detectable in the corresponding ice core samples from Greenland and Antarctica. These peculiar features allow experimental discrimination of nuclide effects caused by gamma-ray bursts and by powerful proton events.
The cosmic-ray hydrogen and helium ( 1 H, 2 H, 3 He, 4 He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15 th 2006. The rare isotopes 2 H and 3 He in cosmic rays are believed to originate mainly from the interaction of high energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23 rd solar minimum from
The cosmic-ray lithium and beryllium ( 6 Li, 7 Li, 7 Be, 9 Be, 10 Be) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15 th 2006. The rare lithium and beryllium isotopes in cosmic rays are believed to originate mainly from the interaction of high energy carbon, nitrogen and oxygen nuclei with the interstellar medium (ISM), but also on "tertiary" interactions in the ISM (i.e. produced by further fragmentation of secondary beryllium and boron). In this paper the isotopic ratios 7 Li/ 6 Li and 7 Be/( 9 Be+ 10 Be) measured between 150 and 1100 MeV/n using two different detector systems from
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.