The genetic diversity of 34 isolates of Grapevine leafroll-associated virus 1 (GLRaV-1) from different wine, table, and ornamental grape cultivars in California, New York, and Washington States in the United States was investigated. Segments of the heat-shock protein 70 homolog (HSP70h) gene, coat protein (CP) gene, coat protein duplicate 2 (CPd2) gene, and open reading frame 9 (p24) were amplified by reverse-transcription polymerase chain reaction, cloned, and sequenced. A pairwise comparison of nucleotide sequences revealed intra- and interisolate sequence diversity, with CPd2 and HSP70h being the most and the least divergent, respectively, among the four genomic regions studied. The normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site indicated different purifying selection pressures acting on each of the four genomic regions, with the CP and CPd2 being subjected to the strongest and weakest functional constraints, respectively. A global phylogenetic analysis of sequences from the four genomic regions revealed segregation of GLRaV-1 isolates into three major clades and a lack of clearly defined clustering by geographical origin. In contrast, only two lineages were apparent when the CP and CPd2 gene sequences were used in phylogenetic analyses. Putative recombination events were revealed among the HSP70h, CP, and p24 sequences. The genetic landscape of GLRaV-1 populations presented in this study provides a foundation for better understanding of the epidemiology of grapevine leafroll disease across grape-growing regions in the United States. In addition, this study will benefit grape clean plant programs across the country in improving the sanitary status of planting materials provided to nurseries and grape growers.
The vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici is an important soil borne pathogen causes severe yield loss. The molecular characterization and their interaction with its host is necessary to develop a protection strategy. 20 isolates of F. oxysporum f.sp. lycopersici (FOL) were isolated from wilt infected tomato plants across Tamil Nadu. They were subjected to cultural, morphological, molecular and virulence studies. The results revealed that all the isolates produced both micro and macro conidia with different size, number of cells. The colors of the culture and growth pattern were also varied. In addition, chlamydospores were observed terminally and intercalary. The PCR analysis with F. oxysporum species-specific primer significantly amplified an amplicon of 600 bp fragment in all the isolates. Based on the above characters and pathogenicity, isolate FOL-8 was considered as virulent and FOL-20 was considered as least virulent. Proteomics strategy was adopted to determine the virulence factors between the isolates of FOL-8 and FOL-20. The 2D analyses have showed the differential expression of 17 different proteins. Among them, three proteins were down regulated and 14 proteins were significantly up regulated in FOL-8 than FOL-20 isolate. Among the 17 proteins, 10 distinct spots were analyzed by MALDI-TOF. The functions of the analyzed proteins, suggested that they were involved in pathogenicity, symptom expression and disease development, sporulation, growth, and higher penetration rate on tomato root tissue. Overall, these experiments proves the role of proteome in pathogenicity of F. oxysporum f.sp. lycopersici in tomato and unravels the mechanism behinds the virulence of the pathogen in causing wilt disease.
The effect of chemicals on the induction of systemic resistance in blackgram (Vigna mungo) against urdbean leaf crinkle virus (ULCV) was studied. Pre-inoculation spraying of blackgram plants with resistance-inducing chemicals, namely salicylic acid and benzothiadiazole at 100 ppm concentration was found to be effective in reducing ULCV infection and increasing the incubation period of the virus under controlled conditions. The treatment of blackgram plants with salicylic acid and benzothiadiazole significantly increased the phenylalanine ammonialyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) activities. New isoforms of peroxidase and polyphenol oxidase were also induced by these treatments. A two-fold increase in accumulation of total phenol was observed in plants treated with salicylic acid and benzothiadiazole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.