The hypothermic response of rats to only brief ( approximately 2 h) hypoxia has been described previously. The present study analyzes the hypothermic response in rats, as well as level of activity (L(a)), to prolonged (63 h) hypoxia at rat thermoneutral temperature (29 degrees C). Mini Mitter transmitters were implanted in the abdomens of 10 adult Sprague-Dawley rats to continuously record body temperature (T(b)) and L(a). After habituation for 7 days to 29 degrees C and 12:12-h dark-light cycles, 48 h of baseline data were acquired from six control and four experimental rats. The mean T(b) for the group oscillated from a nocturnal peak of 38.4 +/- 0.18 degrees C (SD) to a diurnal nadir of 36.7 +/- 0.15 degrees C. Then the experimental group was switched to 10% O(2) in N(2). The immediate T(b) response, phase I, was a disappearance of circadian rhythm and a fall in T(b) to 36.3 +/- 0.52 degrees C. In phase II, T(b) increased to a peak of 38.7 +/- 0.64 degrees C. In phase III, T(b) gradually decreased. At reoxygenation at the end of the hypoxic period, phase IV, T(b) increased 1.1 +/- 0.25 degrees C. Before hypoxia, L(a) decreased 70% from its nocturnal peak to its diurnal nadir and was entrained with T(b). With hypoxia L(a) decreased in phase I to essential quiescence by phase II. L(a) had returned, but only to a low level in phase III, and was devoid of any circadian rhythm. L(a) resumed its circadian rhythm on reoxygenation. We conclude that 63 h of sustained hypoxia 1) completely disrupts the circadian rhythms of both T(b) and L(a) throughout the hypoxic exposure, 2) the hypoxia-induced changes in T(b) and L(a) are independent of each other and of the circadian clock, and 3) the T(b) response to hypoxia at thermoneutrality has several phases and includes both hypothermic and hyperthermic components.
When rats, acclimated to an ambient temperature (T(a)) of 29 degrees C, are exposed to 10% O(2) for 63 h, the circadian rhythms of body temperature (T(b)) and level of activity (L(a)) are abolished, T(b) falls to a hypothermic nadir followed by a climb to a hyperthermic peak, L(a) remains depressed (Bishop B, Silva G, Krasney J, Salloum A, Roberts A, Nakano H, Shucard D, Rifkin D, and Farkas G. Am J Physiol Regulatory Integrative Comp Physiol 279: R1378-R1389, 2000), and overt brain pathology is detected (Krasney JA, Farkas G, Shucard DW, Salloum AC, Silva G, Roberts A, Rifkin D, Bishop B, and Rubio A. Soc Neurosci Abstr 25: 581, 1999). To determine the role of T(a) in these hypoxic-induced responses, T(b) and L(a) data were detected by telemetry every 15 min for 48 h on air, followed by 63 h on 10% O(2) from rats acclimated to 25 or 21 degrees C. Magnitudes and rates of decline in T(b) after onset of hypoxia were inversely proportional to T(a), whereas magnitudes and rates of T(b) climb after the hypothermic nadir were directly proportional to T(a). No hyperthermia, so prominent at 29 degrees C, occurred at 25 or 21 degrees C. The hypoxic depression of L(a) was least at 21 degrees C and persisted throughout the hypoxia. In contrast, T(a) was a strong determinant of the magnitudes and time courses of the initial fall and subsequent rise in T(b). We propose that the absence of hyperthermia at 21 and 25 degrees C as well as a persisting hypothermia may protect the brain from overt pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.