Experimental results from the COMPASS-C tokamak reveal a sharp threshold in amplitude above which externally applied static resonant magnetic perturbations (RMPs) induce stationary magnetic islands. Such islands (in particular, m = 2, n = 1 islands) give rise to a significant degradation in energy and particle confinement, suppression of the sawtooth oscillation and a large change in the impurity ion toroidal velocity. The observed threshold for inducing stationary (2,l) islands is consistent with a phenomenological resistive MHD model which takes into account plasma rotation (including poloidal flow damping) and externally applied resonant fields. Broadly similar results are found for applied fields other than m = 2, n = 1. Other results from RMP experiments are also discussed, such as the stabilization of rotating MHD activity, stimulated disruptions and extensions to the disruptive density limit. Finally, the likely effect of field errors on large tokamaks is briefly examined in the light of the COMPASS-C results.
In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements-time and spatial resolutions, etc-will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements.The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required.The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all the plasma parameters needed to support the basic and advanced operation (including active control) of the device, machine protection and also those needed to support the physics programme. Once the requirements are defined, the appropriate (combination of) diagnostic techniques can be selected and their implementation onto the tokamak can be developed. The selected list of diagnostics is an important guideline for identifying dedicated research and development needs in the area of ITER diagnostics.This paper gives a comprehensive overview of recent progress in the field of ITER diagnostics with emphasis on the implementation issues. After a discussion of the measurement requirements for plasma parameters in ITER and their justifications, recent progress in the field of diagnostics to measure a selected set of plasma parameters is presented. The integration of the various diagnostic systems onto the ITER tokamak is described. Generic research and development in the field of irradiation effects on materials and environmental effects on first mirrors are briefly presented. The paper ends with an assessment of the measurement capability for ITER and a forward of what will be gained from operation of the various diagnostic systems on ITER in preparation for the machines that will follow ITER. Performance assessment relative to requirements Design meets requirements S339 A.J.H. Donné et alPhysics Basis [7] and remains essentially the same. However, for ITER, the specific limits have changed. 2.1.2.Measurements needed for plasma control and evaluation. The measurements needed for plasma control and evaluation are naturally directly linked to the experimental programme, and particularly to the operating phase (i.e. H, D or D/T) and the operating scenario (H-mode, hybrid, etc). Since there is expected to be a phased introduction of po...
A number of possible designs of external and in-vessel coils generating resonant magnetic perturbations (RMPs) for Type I edge localized modes (ELMs) control in ITER are analysed for the reference scenarios (H-mode, Hybrid and Steady-State) taking into account physical, technical and spatial constraints. The level of stochasticity (Chirikov parameter ∼1 at ψ1/2 ∼ 0.95) generated by the I-coils in the DIII-D experiments on ELMs suppression was taken as a reference. Designs with a toroidal symmetry n = 3 were considered to avoid lower n numbers producing larger central islands, a potential trigger of MHD instabilities. The evaluation of RMP coils designs is done with respect to the RMPs spectrum that should produce enough edge ergodisation and minimum central perturbations at minimum current. The proposed designs include in-vessel, mid-ports and external coils. Changes in the equilibrium due to changes in the internal inductance l i, the poloidal beta βp and the edge magnetic shear in a reasonable range for ITER scenarios were demonstrated to have a small effect on the edge ergodisation. Present estimations were done without margins and for vacuum fields neglecting plasma response on RMPs. The validity of the vacuum approach was estimated analytically in the visco-resistive linear response regime using [1]. The typical radial magnetic field amplitudes produced by RMP coils in DIII-D and ITER are an order of magnitude or slightly above the critical values for the ‘downward’ bifurcation to the reconnected stage indicating the possibility of the islands formation in the pedestal region. Central islands (from the top of the pedestal) are expected to be screened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.