Rainfall intensity-duration-frequency (IDF) curves are of particular importance in water resources management, for example, in urban hydrology, for the design of hydraulic structures and the estimation of the flash flood risk in small catchments. IDF curves describe rainfall intensity as a function of duration and return period, and they are significant for water resources planning, as well as for the design of hydraulic constructions and structures. In this study, scaling properties of extreme rainfall are examined to establish the scaling behavior of statistical non-central moment over different durations. IDF curves and equations are set up for all stations by using the parameter obtained from scaling behavior, the location and scale parameters μ24 and σ24 of the Gumbel distribution (EVI) sample of annual maximum 1440 min rainfall data. In another hand, we have established the IDF curves for ten selected rain gauge stations in the Northern (Oueme Valley) parts of Benin Republic, West Africa by using the simple scaling approach. Analysis of rainfall intensities (5 min and 1440 min rainfall data) from the ten rainfall stations shows that rainfall in north-Benin displays scales invariance property from 5 min to 1440 min. For time scaling, the statistical properties of rainfall follow the hypothesis of simple scaling. Therefore, the simple scaling model applies to the rainfall in (Oueme Valley). Hence, the simple scaling model is thought to be a viable approach to estimate IDF curves of hourly and sub-hourly rainfall form rainfall projections. The obtained scaling exponents are less than 1 and range from 0.23 to 0.59. The empirical model shows that the scaling procedure is a good estimator as it is more efficient and gives more accurate estimates compared with the observed rainfall than the traditional method which only consists the Gumbel model in all stations for lower return periods (T<5 years) but not for higher return periods.Las curvas de precipitación Intensidad-Duración-Frecuencia (IDF) son de particular importancia en el manejo de los recursos hídricos, como es el caso de la hidrología urbana o para el diseño de estructuras hidráulicas y la estimación del riesgo de crecidas en pequeñas captaciones. Las curvas IDF describen la intensidad de las precipitaciones como una función con períodos de duración y recurrencia, lo que las hace significativas en la planeación de recursos hídricos así como en el diseño de construcciones y estructuras hidráulicas. Este estudio examina las propiedades de escala en precipitaciones extremas para establecer un comportamiento en momentos estadísticos marginales en diferentes períodos de duración. Se establecieron las curvas IDF y las ecuaciones para todas las estaciones a partir del parámetro obtenido del comportamiento de escala, la ubicación y los parámetros de escala μ24 and σ24 de la muestra de información de precipitación máxima anual de 1440 minutos de la distribución de Gumbel (EVI). Por otro lado, se establecieron las curvas IDF para 10 estaciones pluviométricas sele...
This study analyzed the long-term memory (LTM) in precipitation over Bénin synoptic stations from 1951 to 2010 using the detrended fluctuation analysis (DFA) method. Results reveal the existence of positive long-term memory characteristic in rainfall field. DFA exponent values are different regarding the concerned synoptic stations, reflecting the effect of geographical position and climate on the LTM. These values were related to the type of climate. The best DFA1-4 method depends on the geographical position of the studied station. However, DFA2 is generally the best in terms of spatial average from DFA1 to DFA4. In Bénin synoptic stations, except the Parakou station, the long-term temporal correlations are systematically the source of multifractality in rainfall. Except Natitingou, the strength of long-term memory characteristic decreases each twenty years in the study period. Considering the fractal approach, our results show that the subperiod 1991–2010 is not really a transition period as shown before. Thus, the drought is prolonging until 2010. So, fractal theory reveals more Bénin climatic characteristics.
Energy exchange between land and atmosphere are important in climatic processes. In this paper, the seasonal dynamics and diurnal variations of surface radiation components of agricultural crops are investigated. One year data are used to emphasize the separate contribution of each radiation balance component. From the energy budget equation and FAO empirical model, we compare the clear sky solar radiation and the incoming short wave radiation in order to highlight aerosols and water vapor role in the studied area. The analysis show two important results: 1) The relevance of the short wave radiation in the net radiation budget especially in the wet season and 2) The variations of the long wave radiation were small. Analyses provide an understanding of net radiation seasonal variations in the northern part of Benin.
Cloud-to-Ground (CG) lightning intensity time series recorded in northern Benin, during days of monsoon season (summer 2006), has been deeply explored using multifractal framework. The results suggest the existence of strong multifractal characteristics in lightning intensity. However, detrending the data reduces the degree of multifractality. The multifractality arises from both a fat-tailed probability density function and longrange temporal correlations. But, the most dominant multifractality in lightning intensity series depends strongly on the kind of detrending that is retained from the profile during the multifractal detrended fluctuation analysis (MFDFA). These findings have allowed us to understand and characterize the complexity of lightning intensity structure in the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.