There are numerous defense proteins present in the saliva. Although some of these molecules are present in rather low concentrations, their effects are additive and/or synergistic, resulting in an efficient molecular defense network of the oral cavity. Moreover, local concentrations of these proteins near the mucosal surfaces (mucosal transudate), periodontal sulcus (gingival crevicular fluid) and oral wounds and ulcers (transudate) may be much greater, and in many cases reinforced by immune and/or inflammatory reactions of the oral mucosa. Some defense proteins, like salivary immunoglobulins and salivary chaperokine HSP70/HSPAs (70 kDa heat shock proteins), are involved in both innate and acquired immunity. Cationic peptides and other defense proteins like lysozyme, bactericidal/permeability increasing protein (BPI), BPI-like proteins, PLUNC (palate lung and nasal epithelial clone) proteins, salivary amylase, cystatins, prolin-rich proteins, mucins, peroxidases, statherin and others are primarily responsible for innate immunity. In this paper, this complex system and function of the salivary defense proteins will be reviewed.
The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed.
Salivary glands produce a bicarbonate-rich fluid containing digestive and protective proteins and other components to be delivered into the gastrointestinal tract. Its function is under strict control of the autonomic nervous system. Salivary electrolyte and fluid secretion are primarily controlled by parasympathetic activity, while protein secretion is primaily triggered by sympathetic stimulation. Stress activates the hypothalamic - pituitary - adrenal axis. The peripheral limb of this axis is the efferent sympathetic/adrenomedullary system. Stress reaction, even if it is sustained for long, does not cause obvious damage to salivary glands. However, stress induces dramatic changes in the constituents of secreted saliva. Since salivary protein secretion is strongly dependent on sympathetic control, changes in saliva can be utilized as sensitive stress indicators. Some of the secreted compounds are known for their protective effect in the mouth and the gut, while others may just pass through the glands from blood plasma because of their chemical nature and the presence of transcellular salivary transporting systems. Indeed, most compounds that appear in blood circulation can also be identified in saliva, although at different concentrations. This work overviews the presently recognized salivary stress biosensors, such as amylase, cortisol, heat shock proteins and other compounds. It also demonstrates that saliva is widely recognised as a diagnostic tool for early and sensitive discovery of salivary and systemic conditions and disorders. At present it may be too early to introduce most of these biomarkers in daily routine diagnostic applications, but advances in salivary biomarker standardisation should permit their wide-range utilization in the future including safe, reliable and non-invasive estimation of acute and chronic stress levels in patients.
Heat shock proteins of the 70kDa family (HSPAs/HSP70s) are major molecular chaperones and cytokines of most cells and microbes, extracellular and interstitial fluids, blood, synovial fluids and secretory body fluids like saliva. The induction of human HSPAs plays an important role at cellular level under most stress conditions; whereas microbial HSPAs improve microbial tolerance to environmental changes, and improve virulence and resistance against antimicrobial peptides. Extracellular HSPAs reveal cytoprotective properties and are involved in numerous physiological and pathological events, including modulation of cytokine release and immunity. Accordingly, HSPAs play a role in the maintenance of pulpal health, and the repair of injured dental hard tissues. HSPAs also play a role in stress adaptation of periodontal tissues, and in the maintenance of periodontal and mucosal health including defense against microbes, prevention of mucosal allergic reactions, and facilitation of healing of ulcers and wounds. Despite their advantageous effects maintaining health of several oral tissues, HSPAs are likely to play a role in the disadvantageous amplification of pulpal inflammatory response to bacteria, and in the formation of several periapical inflammatory lesions. HSPAs may also induce gingivitis under certain conditions, and play a role in the progression of periodontal bone defects. HSPAs may also play a role in atopic-type allergic reactions, autoimmune disorders, and haptenation in certain cases. Based on the above data, it can be assumed that HSPAs play an important role in oral defense under healthy conditions; however, their role is somewhat “Janus-faced” under pathological conditions.
The objective of the current epidemiological study is to show the correlation of various postural abnormalities and spinal deformities and the clinically identifiable dentofacial anomalies by orthodontic examination. Twenty-three children with Scheuermann's disease [mean age: 14 years 8 months; standard deviation (SD): 1 year 8 months] and 28 with scoliosis (mean age: 14 years 7 months; SD: 2 years 3 months) participated in the study. Standardized orthodontic screening protocols were used to map the occlusal relations in the sagittal, vertical, and horizontal dimensions; the space relations of the maxillary and mandibular frontal segment; the temporomandibular joint (TMJ) status; and the facial asymmetries. Statistically significant differences (p<0.05) were found between the values of the examined groups of patients for the following measurements: incisal overjet and overbite, upper and lower midline deviation, mandibular frontal spacing, TMJ pathological symptoms and functional characteristics, and frequency of facial asymmetries. A large percentage of patients with pre-pubertal developments of spinal deformities have various dentofacial anomalies. The majority of these anomalies are present in patients with Scheuermann's disease. Early treatment of the malocclusions closely correlated to postural disorders should minimize the progression of the dentofacial anomalies, making necessary performing orthodontic screening of these patients as early as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.