Gene silencing through RNA interference (RNAi) has revolutionized the study of gene 98 function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) 99 RNAi has many times proven to be difficult to achieve. Most of the negative results have been 100 anecdotal and the positive experiments have not been collected in such a way that they are 101 possible to analyze. In this review, we have collected detailed data from more than 150 102 experiments including all to date published and many unpublished experiments. Despite a 103 large variation in the data, trends that are found are that RNAi is particularly successful in the 104 family Saturniidae and in genes involved in immunity. On the contrary, gene expression in 105 epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding 106 dsRNA requires high concentrations for success. Possible causes for the variability of success 107 in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further 108 investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the 109 innate immune response. Our general understanding of RNAi in Lepidoptera will be further 110 aided in the future as our public database at http://insectacentral.org/RNAi will continue to 111 gather information on RNAi experiments.
SummaryBacterial recognition in the lepidopteran insect, Manduca sexta, is mediated by pattern recognition proteins including Hemolin, Peptidoglycan recognition protein (PGRP) and Immulectin-2. These proteins bind to molecular patterns present on the surface of bacteria and trigger a protective response involving humoral and cellular reactions. Cellular mechanisms mediated by haemocytes include phagocytosis, encapsulation, and the formation of melanotic nodules. Here, we show that a non-pathogenic strain of Escherichia coli induces mRNA transcription and protein expression of Hemolin and PGRP but not Immulectin-2 in Manduca haemocytes. This upregulation can be effectively prevented (knocked-down) using RNA interference (RNAi) following injection of double-stranded (ds) RNA. Knock-down of Hemolin significantly decreased the ability of insects to clear E. coli from the haemolymph and caused a reduction in the number of free haemocytes. RNAi of Hemolin reduced the ability of haemocytes to engulf bacteria through phagocytosis and to form melanotic nodules in vivo. Importantly, washed haemocytes taken from RNAi-treated insects showed reduced ability to form microaggregates around bacteria in vitro. This shows that the immune function affected by RNAi knockdown of Hemolin is intrinsic to the haemocytes. In contrast, RNAi of PGRP had no effect on any of these cellular immune functions. These results demonstrate the vital role of Hemolin in Manduca cellular immune responses.
Injecting the insect pathogenic bacterium Photorhabdus luminescens into the blood system of the model lepidopteran insect Manduca sexta induces nitric oxide synthase (NOS) expression in the fat body and blood cells (haemocytes), whereas following oral ingestion of bacteria NOS expression is limited to the gut. We used RNA interference to knock-down expression of NOS throughout the insect. Preventing NOS induction in this way adversely affected the survival of orally infected insects and caused a significant increase in the number of bacteria crossing into the haemolymph. By contrast, knock-down of NOS had no effect on the mortality rate of insects infected with P. luminescens by injection. Pharmacological inhibition of NOS decreased both nitric oxide (NO) levels in the gut wall and survival of orally infected insects, whereas elevation of gut wall NO using an NO donor increased survival of NOS silenced caterpillars. Together, our results imply that induced synthesis of NO is important in mediating insect immune defence against the pathogen by inhibiting transfer of bacteria across the gut wall.
Twenty strains (including eight phase variant pairs) of nematode-symbiotic and insect-pathogenic Photorhabdus bacteria were examined for the production of proteolytic enzymes by using a combination of several methods, including gelatin liquefaction, zymography coupled to native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and activity measurement with two chromogen substrate types. Four protease activities (ϳ74, ϳ55, ϳ54, and ϳ37 kDa) could be separated. The N-terminal sequences of three of the proteases were determined, and a comparison with sequences in databases allowed identification of these proteases as HEXXH metallopeptidases. Thus, the 74-kDa protease ( -D) is a nonmetalloenzyme. PrtA and Php-C were zymographically detected, and they occurred in several smaller forms as well. OpdA could not be detected by zymography. PrtA, Php-C, and Php-D were secreted proteases; OpdA, in contrast, was an intracellular enzyme. OpdA activity was found in every strain tested, while Php-D was detected only in the Brecon/1 strain. There was significant strain variation in the secretion of PrtA and Php-C activities, but reduced activity or a lack of activity was not specific to secondary-phase variants. The presence of PrtA, OpdA, and Php-C activities could be detected in the hemolymph of Galleria melonella larvae 20 to 40 h postinfection. These proteases appear not to be directly involved in the pathogenicity of Photorhabdus, since strains or phase variants lacking any of these proteases do not show reduced virulence when they are injected into G. melonella larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.