The immunomodulatory bioassay-guided fractionation of the methanolic extract of henna (Lawsonia inermis L.; syn. Lawsonia alba L.) leaves resulted in the isolation of seven compounds; three have been isolated for the first time from the genus, namely p-coumaric acid, 2-methoxy-3-methyl-1,4-naphthoquinone and apiin, along with the previously isolated compounds: lawsone, apigenin, luteolin, and cosmosiin. Structural elucidation of the isolated compounds was based upon their physical, chemical as well as spectroscopic characters. Their immuomodulatory profile was studied using an in vitro immunoassay, the lymphocyte transformation assay. The ABTS [2,2Ј-azino-bis (3-ethyl benzthiazoline-6-sulfonic acid)], free radical scavenging assay depicted that all isolated compounds exhibited antioxidant activity comparable to that of ascorbic acid.
The yield of steam distillation of frankincense essential oil (3%); and its physicochemical constants were determined. Capillary GC/MS technique was used for the analysis of the oil. Several oil components were identified based upon comparison of their mass spectral data with those of reference compounds published in literature or stored in a computer library. The oil was found to contain monoterpenes (13.1%), sesquiterpenes (1%), and diterpenes (42.5%). The major components of the oil were duva-3,9,13-trien-1,5α-diol-1-acetate (21.4%), octyl acetate (13.4%), o-methyl anisole (7.6%), naphthalene decahydro-1,1,4a-trimethyl- 6-methylene-5-(3-methyl-2-pentenyl) (5.7%), thunbergol (4.1%), phenanthrene-7- ethenyl-1,2,3,4,4a,5,6,7,8,9,10,10a-dodecahydro-1,1,4a,7-tetramethyl (4.1%), α-pinene (3.1%), sclarene (2.9%), 9-cis-retinal (2.8%), octyl formate (1.4%), verticiol (1.2%) decyl acetate (1.2%), n-octanol (1.1%). The chemical profile of the oil is considered as a chemotaxonomical marker that confirmed the botanical and geographical source of the resin. Biologically, the oil exhibited a strong immunostimulant activity (90% lymphocyte transformation) when assessed by a lymphocyte proliferation assay.
The immunomodulatory bioassay-guided fractionation of the oleogum resin of frankincense (Boswellia carterii Bird wood) resulted in the isolation and identification of 9 compounds; palmitic acid and eight triterpenoids belonging to lupane, ursane, oleanane, and tirucallane skeleta were isolated form the resin. These triterpenoids are lupeol, -boswellic acid, 11-keto--boswellic acid, acetyl -boswellic acid, acetyl 11-keto--boswellic acid, acetyl-α-boswellic acid, 3-oxo-tirucallic acid, and 3-hydroxy-tirucallic acid. The structures of the isolated compounds were deduced based on spectroscopic evidences. The lymphocyte transformation assay of the isolated compounds proved that the total extract retained more activity than that of any of the purified compounds.
A novel phenanthrenoid symmetrical dimer 8,8'-bidehydrojuncusol [1,1',6,6'-tetramethyl-5,5'-divinyl-8,8'-biphenanthrene-2,2',7,7'-tetraol], a related phenanthrenoid monomer, a phenolic chromone, and five flavonoids derivatives have been isolated from the halophyte Juncus acutus L., Juncaceae. The structure of the dimeric phenanthrenoid was determined on the basis of spectroscopic analyses, including 2D NMR spectroscopy, and by spectral correlations. The new dimer and the other isolated compounds bearing four phenolic hydroxy groups showed the significant in vitro antioxidant activity comparable with that of ascorbic acid using 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulphonate] (ABTS) radical cation decolourisation assay. On the basis of the results from an in vitro anti-inflammatory assay using lipopolysaccharide-stimulated RAW264.7 macrophage cells linked with immunoblot analysis, it was found that dimerisation of dehydrojuncusol [1,6-dimethyl-5-vinyl-8-phenanthrene-2,7-diol] molecule nearly nullified its inhibitory effect on the expression of the pro-inflammatory inducible nitric oxide synthase (iNOS) protein.
The novel natural product juncutol (1), 1,4,7-trimethyl-8,9-dihydro-4H-cyclopenta[def]phenanthrene-2,6-diol, along with the three related metabolites juncusol (2), dehydrojuncusol (3), and 6-hydroxymethyl-1-methyl-5-vinyl-9,10-dihydrophenanthrene-2-ol (4), were isolated from the rhizomes of Juncus acutus L. (Juncaceae) growing in Egypt. The structural identity of 1 was determined on the basis of spectroscopic analyses, including 2D NMR spectroscopy. The inhibitory effect of these natural products on the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide-stimulated RAW264.7 macrophage cells was determined for the first time. The unprecedented symmetrical compound juncutol (1) was found to be the most potent inhibitor against the induction of the proinflammatory iNOS protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.