In this paper, we will state and prove some weighted dynamic inequalities of Opial-type involving integrals of powers of a function and of its derivative on time scales which not only extend some results in the literature but also improve some of them. The main results will be proved by using some algebraic inequalities, the Hölder inequality and a simple consequence of Keller’s chain rule on time scales. As special cases of the obtained dynamic inequalities, we will get some continuous and discrete inequalities.
This paper discusses different types of Ulam stability of first-order nonlinear Volterra delay integro-differential equations with impulses. Such types of equations allow the presence of two kinds of memory effects represented by the delay and the kernel of the used fractional integral operator. Our analysis is based on Pachpatte’s inequality and the fixed point approach represented by the Picard operators. Applications are provided to illustrate the stability results obtained in the case of a finite interval.
In this paper we investigate sufficient conditions for many types of stability of both of the abstract first order linear dynamic equations on time scales of the form ∆
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.