Introduction. Nephrotoxicity is one of the important side effects of anthracycline antibiotics. The aim of this study was to investigate the effects of nicotinamide (NAD), an antioxidant agent, against nephrotoxicity induced by doxorubicin (DXR). Methods. The rats were divided into control, NAD alone, doxorubicin (20 mg/kg, i.p.) and DXR plus NAD (200 mg/kg, i.p.) groups. At the end of the 10th day, kidney tissues were removed for light microscopy and analysis. The level of tissues' catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), inducible nitric oxide (iNOS) and endothelial nitric oxide (eNOS) activities were determined. Results. The activities of CAT, GPx, and GSH were decreased, and Po was increased in renal tissue of doxorubicin group compared with other groups. The tissue of the doxorubicin group showed some histopathological changes such as glomerular vacuolization and degeneration, adhesion to Bowman's capsule and thickening and untidiness of tubular and glomerular capillary basement membranes. Histopathological examination showed that NAD prevented partly DXR-induced tubular and glomerular damage. Conclusions. Pretreatment with NAD protected renal tissues against DXR-induced nephrotoxicity. Preventive effects of NAD on these renal lesions may be via its antioxidant and anti-inflammatory action.
This study investigated whether a high-fructose (HFr) diet changes the morphology of seminiferous tubules (ST) in rats and resveratrol (RES) has a possible restoring effect in this sense. Fructose (30%; w/v) was administered to rats alone or together with RES (50 mg/L) in drinking water for 8 weeks. In the HFr group, destruction of the germinal epithelium led to the detection of immature germ cells in the lumen. HFr diet gave rise to a decrease in the ST diameters (p < 0.05), Johnsen's tubular biopsy score values (p < 0.001), and an increase in the apoptotic index (p < 0.05). Ultrastructurally, HFr feeding increased lipid accumulation (p < 0.01), mitochondrial damage, and acrosomal abnormalities in spermatogenic cells. Treatment of HFr -fed rats with RES improved the reduced ST diameters and overall general histological and ultrastructural abnormalities of the STs, but did not change the increased apoptotic index.
BackgroundVisceral fat deposition and its associated atherogenic complications are mediated by glucocorticoids. Cardiac visceral fat comprises mediastinal adipose tissue (MAT) and epicardial adipose tissue (EAT), and MAT is a potential biomarker of risk for obese patients.AimOur objective was to evaluate the role of EAT and MAT 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) and glucocorticoid receptor (GCR) expression in comparison with subcutaneous adipose tissue (SAT) in the development of coronary atherosclerosis in obese patients with coronary artery disease (CAD), and to assess their correlations with CD68 and fatty acids from these tissues.Methods and resultsExpression of 11β-HSD-1 and GCR was measured by qRT-PCR in EAT, MAT and SAT of thirty-one obese patients undergoing coronary artery bypass grafting due to CAD (obese CAD group) and sixteen obese patients without CAD undergoing heart valve surgery (controls). 11β-HSD-1 and GCR expression in MAT were found to be significantly increased in the obese CAD group compared with controls (p < 0.05). In the obese CAD group, 11β-HSD-1 and GCR mRNA levels were strongly correlated in MAT. Stearidonic acid was significantly increased in EAT and MAT of the obese CAD group and arachidonic acid was significantly expressed in MAT of the obese male CAD group (p < 0.05).ConclusionsWe report for the first time the increased expression of 11β-HSD-1 and GCR in MAT compared with EAT and SAT, and also describe the interrelated effects of stearidonic acid, HOMA-IR, plasma cortisol and GCR mRNA levels, explaining 40.2% of the variance in 11β-HSD-1 mRNA levels in MAT of obese CAD patients. These findings support the hypothesis that MAT contributes locally to the development of coronary atherosclerosis via glucocorticoid action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.